

SYSTEMS OF SYSTEMS
ENGINEERING
Principles
and Applications

SYSTEMS OF SYSTEMS
ENGINEERING
Principles
and Applications

Edited by

Mo Jamshidi

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-6588-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Systems of systems engineering : principles and applications / editor, Mo
Jamshidi. -- 1st ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-6588-6 (alk. paper)
1. Systems engineering--Technological innovations. 2. Large scale systems. I.

Jamshidi, Mohammad. II. Title.

TA168.S88854 2008
620.001’171--dc22 2008019820

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedication
To my family

Jila, Ava, and Nima

Contents

About the Editor ..ix

Contributors ...xi

Chapter 1 Introduction to system of systems ...1

Mo Jamshidi

Chapter 2 SoS architecture ...37

Reggie Cole

Chapter 3 Emergence of SoS, sociocognitive aspects71

Beverly Gay McCarter and Brian E. White

Chapter 4 A system-of-systems simulation framework and its
applications ...107

Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

Chapter 5 Technology evaluation for system of systems133

Patrick T. Biltgen

Chapter 6 Enterprise system of systems ..165

George Rebovich, Jr.

Chapter 7 Definition, classification, and methodological issues
of system of systems ..191

Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

Chapter 8 Policymaking to reduce carbon emissions:
An application of system-of-systems perspective207

Datu Buyung Agusdinata, Lars Dittmar, and Daniel DeLaurentis

viii Contents

Chapter 9 Medical and health management system of systems233

Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

Chapter 10 The microgrid as a system of systems251

Laurence R. Phillips

Chapter 11 An integrated intelligent decision support system
based on sensor and computer networks281

Qishi Wu, Mengxia Zhu, Nageswara S. V. Rao, S. Sitharama Iyengar,
Richard R. Brooks, and Min Meng

Chapter 12 Defense applications of SoS ..319

Charles E. Dickerson

Chapter 13 System of air vehicles ..339

Richard Colgren

Chapter 14 System of autonomous rovers and their applications365

Ferat Sahin, Ben Horan, Saeid Nahavandi, Vikraman Raghavan,
and Mo Jamshidi

Chapter 15 Space applications of system of systems385

Dale S. Caffall and James Bret Michael

Chapter 16 Airport operations: A system-of-systems approach403

Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

Chapter 17 Knowledge amplification by structured expert
randomization—KASERs in SoS design421

Stuart H. Rubin

Chapter 18 System-of-systems standards ..451

Mark A. Johnson

Index ...463

About the Editor
Mo M. Jamshidi (fellow IEEE, fellow ASME, associate fellow AIAA, fellow
AAAS, fellow TWAS, fellow NYAS) received the Ph.D. degree in electrical
engineering from the University of Illinois at Urbana-Champaign in Feb-
ruary 1971. He holds three honorary doctorate degrees from Azerbaijan
National University, Baku, Azerbaijan, 1999, University of Waterloo, Canada,
and Technical University of Crete, Greece in 2004. Currently, he is Lutcher
Brown Endowed Chaired Professor at the University of Texas, San Antonio.
He is also the Regents Professor Emeritus of Electrical and Computer Engi-
neering, the AT&T Professor of Manufacturing Engineering and founding
director of Center for Autonomous Control Engineering (ACE) at the Uni-
versity of New Mexico, Albuquerque. He has been a consultant and special
government employee with U.S. Department of Energy, NASA Headquarters
and Jet Propulsion Laboratory, and U.S. Air Force Research Laboratory for a
combined 25-year period. He has worked in various academic and industrial
positions at various national and international locations including with IBM
and GM Corporations. In 1999, he was a NATO Distinguished Professor in
Portugal conducting lectures on intelligent systems and control. He has over
600 technical publications including 62 books (12 textbooks) and edited vol-
umes. Six of his books have been translated into at least one foreign language.
He is the founding editor or cofounding editor or editor-in-chief of many
journals (including Elsevier’s International Journal of Computers and Electrical
Engineering, Elsevier, UK; Intelligent Automation and Soft Computing, TSI Press,
USA) and one magazine (IEEE Control Systems Magazine). He is editor-in-chief
of the new IEEE Systems Journal (inaugurated in 2007) and coeditor-in-Chief
of the International Journal on Control and Automation. He has been the gen-
eral chairman of World Automation Congress (WAC) from its inception. He
has been active within the IEEE for 42 years. Dr. Jamshidi is a fellow of the
IEEE for contributions to “large-scale systems theory and applications and
engineering education,” a fellow of the ASME for contributions to “control
of robotic and manufacturing systems,” fellow of the AAAS (the American
Association for the Advancement of Science) for contributions to “complex
large-scale systems and their applications to controls and optimization,” a
fellow of Academy of Developing Nations (Trieste, Italy), member of Russian
Academy of Nonlinear Sciences, associate fellow, Hungarian Academy of

x About the Editor

Engineering, a fellow of the New York Academy of Sciences, and recipient of
the IEEE Centennial Medal and IEEE Control Systems Society Distinguished
Member Award and the IEEE CSS Millennium Award. In October 2005 he
was awarded the IEEE SMC Society’s Norbert Weiner Research Achievement
Award, and in October 2006 he received the IEEE SMC Society Outstand-
ing Contribution Award. As an OSU Alumni, he was inducted into Oregon
State University’s Academy of Distinguished Engineers in February 2007. He
founded and has been chair of the IEEE International Conference on System
of Systems Engineering since 2006.

Contributors

Datu Buyung Agusdinata received his Ph.D. from Delft University of Tech-
nology, the Netherlands, in 2008. He will be with the System-of-Systems
Signature Area group at Purdue University, West Lafayette, Indiana. His
research interests are in developing and applying quantitative methods for
dealing with uncertainty in complex problems in the field of energy, trans-
port, infrastructure, and environment.

Patrick T. Biltgen is a senior principal systems engineer at BAE Systems in
Arlington, Virginia. His research focuses on the use of modeling and simu-
lation tools to perform quantitative capability-based analysis of systems-of-
systems. He previously held the position of Research Engineer at the Georgia
Institute of Technology, where he performed research on the use of agent-based
models for technology evaluation. His areas of interest also include systems
engineering methods development, aircraft design, and visual analytics.

Marcus Bjelkemyr is a Ph.D. student in production systems engineering at
the Royal Institute of Technology (KTH), Stockholm, Sweden. His research
focuses on large and complex socio-technical systems, particularly applica-
bility to production systems. In 2004/2005 Marcus Bjelkemyr studied under
Professor Nam Suh at MIT (Massachusetts Institute of Technology), Cam-
bridge. In addition to research, Marcus Bjelkemyr also lectures and super-
vises at the Department of Production Systems at KTH.

Richard R. Brooks is an associate professor of electrical and computer engi-
neering at Clemson University, Clemson, South Carolina, with a B.A. in math-
ematical science from Johns Hopkins University and Ph.D. in computer science
from Louisiana State University. He was head of Pennsylvania State University
Applied Research Laboratory Distributed Systems Department and affiliated
with Pennsylvania State University IE Department from 1996 to 2004.

Dale S. “Butch” Caffall is director of the National Aeronautic and Space
Administration’s Independent Verification and Validation Facility, Fairmont,

xii Contributors

West Virginia. His area of interest is software engineering, with a particular
focus on methods, practices, and tools for software and systems assurance.

Reggie Cole is a principal engineer with the Lockheed Martin Corporation.
He has been a program chief architect, program chief engineer, and engineer-
ing manager. His areas of interest include enterprise and SoS architecture,
analysis of alternatives, capital investment analysis, technology investment
analysis, and technology replacement analysis.

Richard Colgren is an associate professor of aerospace engineering and is
director of the UAV Laboratory at the University of Kansas in Lawrence,
Kansas. Previously he was a senior staff engineer at the Lockheed Martin
Aeronautics Company. His areas of interest include flight vehicle conceptual
design, development, and flight testing and the development and testing of
their autonomous and robust flight control systems.

Doug Creighton received his B.Sc. in physics and B.E. in systems engineer-
ing from the Australian National University, and a Ph.D. in simulation-based
optimization from Deakin University in Australia. He is currently employed
as a post-doctoral research fellow and leads the process modeling and analy-
sis team. His primary areas of research include simulation-based optimi-
zation, agent-based architectures, visualization methodologies, augmented
reality, haptics technologies, and discrete event simulation methodologies,
tools, and applications.

Daniel DeLaurentis is assistant professor of aeronautics and astronautics at
Purdue University, West Lafayette, Indiana, joining the University in 2004
under the System-of-Systems Signature Area. His areas of interests are sys-
tem of systems modeling and analysis methodologies and advanced design
techniques applied to air/space transportation systems and civil infrastruc-
ture systems.

Charles E. Dickerson is chair of systems engineering at Loughborough Uni-
versity and previously was a technical fellow at BAE Systems. Before joining
BAE, he was at MIT Lincoln Laboratory and he was the director of archi-
tecture for the chief engineer of the U.S. Navy. He is a signatory to the IEEE
ICSOS and chair of the INCOSE Architecture Working Group. His aerospace
experience includes air vehicle survivability and design at the Lockheed
Skunk Works and Northrop’s Advanced Systems Division, and operations
analysis at the Center for Naval Analyses. He received his Ph.D. from Purdue
University in 1980.

Lars Dittmar is affiliated with the Department of Science, Technology and
Society at Utrecht University in the Netherlands and works at the Energy Sys-
tems department of Berlin University of Technology, Germany. His research

Contributors xiii

interests cover the whole spectrum of energy-economic modeling, energy
policy, and sustainable development.

Yutaka Hata is a professor of Division of Computer Engineering, Graduate
School of Engineering, University of Hyogo, Japan. His areas of interests are
medical imaging, ultrasonic systems, and biosensor systems with fuzzy logic
technology. He is also a visiting professor of Immunology Frontier Research
Center, Osaka University, Japan.

Ben Horan is currently a lecturer in electronics and robotics at Deakin Uni-
versity, Australia, and is in the final stages of his Ph.D. in the haptics and
robotics research area. Ben spent 2006 at the ACE Center at UTSA with Pro-
fessor Mo Jamshidi. His research interests include haptics, haptic teleopera-
tion, mobile robotics, and immersive operator interfaces.

S. Sitharama Iyengar is the chairman and Roy Paul Daniels Chaired Profes-
sor of computer science at Louisiana State University, Baton Rouge, and is
also the Satish Dhawan Chaired Professor at the Indian Institute of Science,
Bangalore. His publications include six textbooks, five edited books, and over
380 research papers. His research interests include high-performance algo-
rithms, data structures, sensor fusion, data mining, and intelligent systems.
He is a world-class expert in computational aspects of sensor networks.

Mo Jamshidi is Lutcher Brown Endowed Chaired Professor of Electrical and
Computer Engineering, University of Texas, San Antonio. His areas of inter-
ests are system of systems simulation, architecture, and control with applica-
tion to land, sea, and air rovers.

Mark A. Johnson is a senior project engineer with the Aerospace Corpora-
tion. He received his Ph.D. from the University of New Mexico in 2002. He
has over 37 years of experience in space technology; communications and
cryptographic systems; systems engineering; research and development;
modeling; simulation and analysis; acquisition; operations; and cost and risk
management. He has extensive experience working with NASA, the U.S. Air
Force, and Aerospace Corporation.

Michael Johnstone received his B.E. (Hons) from Deakin University (Aus-
tralia) and is currently a post-graduate student with Deakin’s School of Engi-
neering and IT. His research is directed toward simulation and control of
complex networks, aiming toward the creation of algorithms to determine
efficient flows through the networks under varying operational conditions.
He has experience in varied simulation studies, baggage handling systems,
logistics, and warehousing, and in all phases in the management of a simula-
tion study.

xiv Contributors

Syoji Kobashi is an associate professor of the Graduate School of Engineer-
ing, University of Hyogo, Hyogo, Japan. His areas of interests are computer-
aided diagnosis system (CAD) in medicine and medical image and signal
processing. He has proposed many CAD systems for diagnosing brain, lung,
pancreatic duct, hip joint, knee joint, etc.

Vu T. Le received a B.E. degree (Hons) in mechanical engineering from
Royal Melbourne Institute of Technology (Australia), and an M.E. in pro-
duction planning and scheduling from Deakin University (Australia). He is
currently a Ph.D. research student in complex network system analysis at
Deakin University. His research interests include scheduling, complex sys-
tem modeling, discrete event simulation, and optimization of manufactur-
ing and material handling systems.

Bengt Lindberg has been a professor in production systems engineering
since 2000, and dean of the School of Industrial Engineering and Manage-
ment at the Royal Institute of Technology (KTH), Stockholm, Sweden, since
2005. His research area includes manufacturing system configuration design,
digital projecting, as well as manufacturing processes and equipment. Bengt
Lindberg has 15 years of experience at the Scania Truck Company. His indus-
trial career covers responsibilities from production engineering and engine
production to development tools for the product realization processes.

Beverly Gay McCarter has an M.S. degree in counseling psychology and
human systems from Florida State University and an M.F.A. degree in fine
art. She is certified in self-organizing systems for complex environments
focusing on human dynamics and consciousness, and is Principal, Human
Mosaic Systems, LLC. Recent clients have included the Smithsonian Institu-
tion and Immigration and Customs Enforcement.

Min Meng is a Ph.D. student with the Department of Computer Science at The
University of Memphis. Her main research interest is in sensor networks.

James Bret Michael is a professor of computer science and electrical and
computer engineering at the Naval Postgraduate School, Monterey, Califor-
nia. His area of interest is methods for attaining high levels of dependability
and trust in software-intensive mission- and safety-critical systems.

Saeid Nahavandi received a B.Sc. (Hons), M.Sc., and Ph.D. in automation
and control from Durham University (U.K.). Professor Nahavandi holds the
title of Alfred Deakin Professor, Chair of Engineering, and is the leader for
intelligent systems research at Deakin University (Australia). His research
interests include modeling of complex systems, simulation-based optimiza-
tion, robotics, haptics, and augmented reality.

Contributors xv

Hiroshi Nakajima is a senior advisory technology researcher at OMRON
Corporation, Kyoto, Japan. His areas of interests are causality-based model-
ing methods, human-machine collaborative systems, and smart management
systems for healthcare, energy consumption, and machine maintenance.

Laurence R. Phillips is a principal member of the technical staff at Sandia
National Laboratories. His current research interest is analysis of risk due to
cyber attack for critical infrastructures. Other areas of interest include artifi-
cial intelligence and agent-based microgrid operation.

Vikraman Raghavan is an engineer with Houston Oil Company in Houston,
Texas. He received his B.S. degree in electronic technology from Chennai,
India, and his M.S. degree from the Department of Electrical and Computer
Engineering at the University of Texas, San Antonio, in June 2007.

Nageswara S. V. Rao is a corporate fellow at Oak Ridge National Laboratory
in Computer Science and Mathematics Division. His research interests include
high-performance networking, sensor networks, and information fusion.

George Rebovich, Jr., is a senior principal engineer in the MITRE Corpora-
tion’s Command & Control Center. He has held a variety of systems engi-
neering positions at MITRE that include leading technical departments and
groups, direct sponsor projects, and technology projects and serving as chief
system engineer for a C4I System program.

Stuart H. Rubin is a senior scientist in the Information, Surveillance, and
Reconnaissance (ISR) Department and director of the Knowledge Amplifica-
tion by Structured Expert Randomization (KASER) Project, SSC Pacific, San
Diego. His areas of interest include computational creativity and knowledge-
discovery systems, emphasizing heuristic, evolutionary, fuzzy, and random-
ization-based methodologies.

Ferat Sahin is associate professor of electrical engineering, Rochester Insti-
tute of Technology, Rochester, New York. His areas of interests are swarm
robotics, multiagent systems, system of systems simulation for autonomous
rovers, and MEMS-based microrobots.

Daniel T. Semere is a senior researcher and lecturer in the Department of
Production Systems Engineering at the Royal Institute of Technology (KTH),
Stockholm, Sweden. His research focuses on distributed systems architec-
ture with particular emphasis to autonomous distributed systems (ADS). He
has a number of publications on this and related fields. His biography is also
included in Marquis Who’s Who 2007 edition. In addition to his research, Dr.
Semere also has lectured and supervised thesis projects in the production
systems graduate program at the Royal Institute of Technology since 2005.

xvi Contributors

Prasanna Sridhar received his B.E. in computer science and engineering
from Bangalore University, India, in 2000, his M.S. degree in computer sci-
ence in 2003, and his Ph.D. in computer engineering in 2007, both from the
University of New Mexico. In 2006, he joined the University of Texas at San
Antonio as a research scientist assistant. His current research interests are
embedded sensor networks, mobile robotics, modeling, and simulation, and
computational intelligence. Currently, he is with Microsoft Corp.

Brian E. White received his Ph.D. from the University of Wisconsin and elec-
trical engineering degrees from M.I.T. He worked at Lincoln Laboratory and
Signaltron, Inc. In his 26+ years at The MITRE Corporation, he’s had senior
technical staff and project/resource management positions, most recently as
director of MITRE’s Systems Engineering Process Office.

Qishi Wu is an assistant professor with the Department of Computer Sci-
ence at the University of Memphis. His research interests include sensor
networks, computer networking, scientific visualization, and distributed
high-performance computing.

Mengxia Zhu is an assistant professor with the Computer Science Depart-
ment at Southern Illinois University, Carbondale. Her research interests
include distributed and high-performance computing, bioinformatics, and
distributed sensor networks.

1

chapter one

Introduction to
system of systems
Mo Jamshidi

Contents

1.1 Introduction..2
1.2 System of systems definitions ..3
1.3 Problems in system of systems ..4

1.3.1 Theoretical problems ..4
1.3.1.1 Architecting system-of-systems solutions4
1.3.1.2 Emergence of SoS, sociocognitive aspects5
1.3.1.3 SoS simulation ..6
1.3.1.4 Enterprise systems of systems ...7
1.3.1.5 Definition, classification, and methodological

issues of system of systems ..8
1.3.2 Implementation problems ..8

1.3.2.1 Policymaking to reduce carbon emissions8
1.3.2.2 Medical and health management system of systems9
1.3.2.3 The microgrid as a system of systems9
1.3.2.4 Intelligent decision support system based on sensor

and computer networks .. 10
1.3.2.5 Defense applications of SoS .. 11
1.3.2.6 Systems of air vehicles .. 11
1.3.2.7 System of autonomous rovers and their

applications ... 12
1.3.2.8 Space applications of system of systems 12
1.3.2.9 Airport operations: a system-of-systems approach 13
1.3.2.10 KASERS in SoS design .. 13
1.3.2.11 System-of-systems standards ... 14

1.4 Other SoSE issues .. 15
1.4.1 Open systems approach to system of systems engineering 15
1.4.2 SoS integration ... 16
1.4.3 Engineering of SoS .. 16
1.4.4 SoS management: the governance of paradox 17

2 Mo Jamshidi

1.4.5 Deepwater coastguard program ... 18
1.4.6 Future combat missions.. 19
1.4.7 Systems engineering for the Department of Defense

system of systems .. 20
1.4.8 Sensor networks .. 20
1.4.9 Healthcare systems ... 20
1.4.10 Global Earth Observation System of Systems 21
1.4.11 E-enabling and SoS aircraft design via SoSE22
1.4.12 A system-of-systems perspective on infrastructures 24
1.4.13 A system-of-systems view of services ..25
1.4.14 System of systems engineering in space exploration25
1.4.15 Robotic swarms as an SoS .. 26
1.4.16 Communication and navigation in space SoS 26
1.4.17 National security ... 27
1.4.18 Electric power systems grids as SoS ...28
1.4.19 SoS approach for renewable energy ... 29
1.4.20 Sustainable environmental management from a system

of systems engineering perspective.. 29
1.4.21 Transportation systems ..30
1.4.22 System of land, sea, and air vehicles as SoS 31

1.5 Conclusions .. 32
References .. 32

1.1 Introduction
Recently, there has been a growing interest in a class of complex systems
whose constituents are themselves complex. Performance optimization,
robustness, and reliability among an emerging group of heterogeneous sys-
tems in order to realize a common goal has become the focus of various
applications including military, security, aerospace, space, manufacturing,
service industry, environmental systems, and disaster management, to name
a few [Crossley, 2006; Lopez, 2006; Wojcik and Hoffman, 2006]. There is an
increasing interest in achieving synergy between these independent sys-
tems to achieve the desired overall system performance [Azarnoosh et al.
2006]. In the literature, researchers have addressed the issue of coordination
and interoperability in a system of systems (SoS) [Abel and Sukkarieh, 2006;
DiMario, 2006]. SoS technology is believed to more effectively implement
and analyze large, complex, independent, and heterogeneous systems working
(or made to work) cooperatively [Abel and Sukkarieh, 2006]. The main thrust
behind the desire to view the systems as an SoS is to obtain higher capabili-
ties and performance than would be possible with a traditional system view.
The SoS concept presents a high-level viewpoint and explains the interac-
tions between each of the independent systems. However, the SoS concept is
still at its developing stages [Meilich, 2006; Abbott, 2006].

Chapter one: Introduction to system of systems 3

The next section will present some definitions out of many possible defi-
nitions of SoS. However, a practical definition may be that a system of sys-
tems is a super system comprised of other elements which themselves are
independent complex operational systems and interact among themselves to
achieve a common goal. Each element of an SoS achieves well-substantiated
goals even if they are detached from the rest of the SoS. For example a Boeing
747 airplane, as an element of an SoS, is not SoS, but an airport is an SoS, or a
rover on Mars is not an SoS, but a robotic colony (or a robotic swarm) explor-
ing the red planet, or any other place, is an SoS. As will be illustrated shortly,
associated with SoS, there are numerous problems and open-ended issues
which need a great deal of fundamental advances in theory and verifications.
It is hoped that this volume will be a first effort toward bridging the gaps
between an idea and a practice.

1.2 System of systems definitions
Based on the literature survey on system of systems, there are numerous
definitions whose detailed discussion is beyond the space allotted to this
chapter [Jamshidi, 2005; Sage and Cuppen, 2001; Kotov, 1997; Carlock and
Fenton, 2001; Pei, 2000; Luskasik, 1998]. Here we enumerate only six of many
potential definitions:

Definition 1: Enterprise systems of systems engineering (SoSE) is
focused on coupling traditional systems engineering activities with
enterprise activities of strategic planning and investment analysis
[Carlock and Fenton, 2001].

Definition 2: System-of-systems integration is a method to pursue devel-
opment, integration, interoperability, and optimization of systems to
enhance performance in future battlefield scenarios [Pei, 2000].

Definition 3: Systems of systems exist when there is a presence of a
majority of the following five characteristics: operational and mana-
gerial independence, geographic distribution, emergent behavior,
and evolutionary development [Jamshidi, 2005].

Definition 4: Systems of systems are large-scale concurrent and distrib-
uted systems that are comprised of complex systems [Jamshidi, 2005;
Carlock and Fenton, 2001].

Definition 5: In relation to joint war-fighting, system of systems is con-
cerned with interoperability and synergism of Command, Control,
Computers, Communications, and Information (C4I) and Intelligence,
Surveillance, and Reconnaissance (ISR) Systems [Manthorpe, 1996].

Definition 6: SoSE involves the integration of systems into systems of
systems that ultimately contribute to evolution of the social infra-
structure [Luskasik, 1998].

4 Mo Jamshidi

Detailed literature survey and discussions on these definitions are given
in [Jamshidi, 2005, 2008]. Various definitions of SoS have their own merits,
depending on their application.

The favorite definition of this author and the volume’s editor is systems
of systems are large-scale integrated systems which are heterogeneous and
independently operable on their own, but are networked together for a com-
mon goal. The goal, as mentioned before, may be cost, performance, robust-
ness, etc.

1.3 Problems in system of systems
In the realm of open problems in SoS, just about anywhere one touches,
there is an unsolved problem, and immense attention is needed by many
engineers and scientists. No engineering field is more urgently needed in
tackling SoS problems than SE—system engineering. On top of the list of
engineering issues in SoS is the engineering of SoS, leading to a new field of
SoSE [Wells and Sage, 2008]. How does one extend SE concepts like analysis,
control, estimation, design, modeling, controllability, observability, stability,
filtering, simulation, etc. so that they can be applied to SoS? Among numer-
ous open questions are how one can model and simulate such systems (see
Chapter 4 by Sahin et al.). In almost all cases a chapter in this volume will
accommodate the topic raised. Additional references are given to enhance a
search by the interested reader.

1.3.1 Theoretical problems

In this section a number of urgent problems facing SoS and SoSE are dis-
cussed. The major issue here is that a merger between SoS and engineering
needs to be made. In other words, systems engineering (SE) needs to undergo
a number of innovative changes to accommodate and encompass SoS.

1.3.1.1 Architecting system-of-systems solutions
Cole, in Chapter 2, presents solution ideas for SoS architectures. The author
indicates that, along with defining the problem, one of the most important jobs
of the systems engineer is to partition the problem into smaller, more man-
ageable problems and make critical decisions about the solution. One of the
most critical decisions is the architecture—the fundamental organization of
a system embodied in its components, their relationships to each other and to
the environment, and the principles guiding its design and evolution [ANSI/
IEEE-1472, 2000]. While it is impossible to understand all the characteristics
and consequences of the architecture at the time the system is designed, it is
possible to produce a system architecture that maximizes the ability of the sys-
tem to meet user needs while minimizing the unintentional consequences.

In one sense, architecting a complex system that is comprised of a number
of collaborating independent systems is no different than designing a simple

Chapter one: Introduction to system of systems 5

system. Both start with definition of a problem and conception of solution.
Both warrant consideration of environmental context. Both involve analysis
of factors related to effectiveness. And both require design compromises and
balancing of competing priorities. The basic process is the same. In fact, it
has been well documented for nearly 50 years [Asimow, 1962]. But compared
to the design of simple systems, the complexity of designing a system-of-sys-
tems (SoS) solution is daunting, and the design process must be approached
with that complexity in mind. Details are found here in Chapter 2.

Dagli and Ergin [2008] also provide a framework for SoS architectures.
As the world is moving toward a networked society, the authors assert,
the business and government applications require integrated systems that
exhibit intelligent behavior. The dynamically changing environmental and
operational conditions necessitate a need for system architectures that will
be effective for the duration of the mission but evolve to new system archi-
tectures as the mission changes. This new challenging demand has led to a
new operational style; instead of designing or subcontracting systems from
scratch, business or government gets the best systems the industry develops
and focuses on becoming the lead system integrator to provide a system of
systems (SoS). SoS is a set of interdependent systems that are related or con-
nected to provide a common mission. In the SoS environment, architectural
constraints imposed by existing systems have a major effect on the system
capabilities, requirements, and behavior. This fact is important, as it com-
plicates the systems architecting activities. Hence, architecture becomes a
dominating but confusing concept in capability development. There is a
need to push system architecting research to meet the challenges imposed
by new demands of the SoS environment. This chapter focuses on system-of-
systems architecting in terms of creating meta-architectures from collections
of different systems. Several examples are provided to clarify system-of-sys-
tems architecting concepts. Since the technology base, organizational needs,
and human needs are changing, the system-of-system architecting becomes
an evolutionary process. Components and functions are added, removed,
and modified as owners of the SoS experience and use the system. Thus an
evolutionary system architecting is described, and the challenges are identi-
fied for this process. Finally, the authors discuss the possible use of artificial
life tools for the design and architecting of SoS. Artificial life tools such as
swarm intelligence, evolutionary computation, and multiagent systems have
been successfully used for the analysis of complex adaptive systems. The
potential use of these tools for SoS analysis and architecting is discussed, by
the authors, using several domain-application-specific examples.

1.3.1.2 Emergence of SoS, sociocognitive aspects
McCarter and White, in Chapter 3, offer a human-centric treatment of the con-
cepts of multiscale analysis and emergence in system of systems (SoS) engi-
neering, or more generally, complex systems engineering (CSE) [Gladwell,
2005]. This includes a characterization of what an individual might do in

6 Mo Jamshidi

conceptualizing a given systems engineering situation. The authors suggest
fresh interpretations of the terms scale and emergence that will contribute
to a more collaborative approach to improving the CSE practice. Because
other authors use “scale” in several different ways, the authors propose
“view” instead. Here a given view is defined as a combination of “scope,”
“granularity,” “mindset,” and “timeframe.” While “emergence” has a rich
spectrum of definitions in the literature, the authors prefer to emphasize
the unexpected, especially “surprising,” flavor of emergence. Sociocogni-
tive aspects are paramount, and small group dynamics are becoming more
significant. Human behaviors that impact information sharing, productiv-
ity, and system interoperability need closer examination as organizations
increasingly rely on decentralization. Therefore, this chapter also highlights
important dynamic social issues, although the authors do not focus on try-
ing to solve them. Rather, areas of further research are suggested which can
lead to better CSE, when people are considered part of any (complex) system
in the SoS.

1.3.1.3 SoS simulation
Sahin et al., in Chapter 4, provide a framework for simulation of SoS. They
have presented an SoS architecture based on extensible markup language
(XML) in order to wrap data coming from different systems in a common
way. The XML can be used to describe each component of the SoS and their
data in a unifying way. If XML-based data architecture is used in an SoS, the
only requirement is for the SoS components to understand/parse XML file
received from the components of the SoS. In XML, data can be represented
in addition to the properties of the data such as source name, data type,
importance of the data, and so on. Thus, it not only represents data but also
gives useful information which can be used in the SoS to take better actions
and to understand the situation better. The XML language has a hierarchical
structure where an environment can be described with a standard and with-
out a huge overhead. Each entity can be defined by the user in the XML in
terms of its visualization and functionality. As a case study in this effort (see
also [Mittal et al., 2008]) a master-scout rover combination represents an SoS
where first a sensor detects a fire in a field. The fire is detected by the master
rover, which commands the scout rover to verify the existence of the fire. It
is important to note that such an architecture and simulation does not need
any mathematical model for members of the systems.

Biltgen, in Chapter 5, provides a fundamental view of technology and
its evaluation for SoS. The author notes that technology evaluation is the
assessment of the relative benefit of a proposed technology for a particular
purpose with respect to one or more metrics. While a number of quanti-
tative assessment techniques have been developed to support engineering
and design of systems, a flexible, traceable, rapid method for technology

Chapter one: Introduction to system of systems 7

evaluation for systems of systems is needed. The primary difficulty in the
assessment process is the complexity associated with large-scale systems of
systems and the integrated nature of models required to study complex phe-
nomena. The author goes on to note that many qualitative techniques exist
for resource allocation; an approach based on modeling and simulation is
usually required to quantify technology potential with respect to measures
of effectiveness (MoEs) at the systems-of-systems level. The modeling and
simulation environment relies on a linked suite of variable fidelity models
that calculate the impact of technologies across a system-of-systems hierar-
chy. Unfortunately, the run time of this suite of tools is often prohibitive for
exploratory analysis and domain-spanning optimization applications. In
this chapter, the concept of surrogate models is introduced to speed up the
analysis process, provide a measure of transparency to the underlying phys-
ical phenomena, and enable the execution of design of experiments across a
range of technology parameters at all levels of the system-of-systems hier-
archy. While polynomial surrogate models have exhibited much promise
in systems-design applications, neural network surrogates are introduced
in this chapter due to their ability to capture the nonlinearities and dis-
continuities often present in systems-of-systems problems. Techniques for
data farming and visualization of results are also introduced as a means to
understand the intricacies of complex design spaces, and an approach to
inverse design, where any variable can be treated as an independent vari-
able, is demonstrated. The inverse design technique allows the user to set
thresholds for capability-based MoEs and decompose the problem to iden-
tify the critical technology factors that are most significant to the responses
in question. Finally, insight is provided into the value of the surrogate-based
approach for understanding sensitivities and quantifying the relative ben-
efit of proposed technologies with respect to the appropriate MoEs at the
system-of-systems level.

1.3.1.4 Enterprise systems of systems
Rebovich, in Chapter 6, takes on the enterprise system of systems engineer-
ing. The author notes that the twenty-first century is an exciting time for the
field of systems engineering. Advances in our understanding of the tradi-
tional discipline are being made. At the same time, new modes of systems
engineering are emerging to address the engineering challenges of systems
of systems and enterprise systems. Even at this early point in their evolution,
these new modes of systems engineering are evincing their own principles,
processes and practices. Some are different in degree than engineering at the
system level, while others are different in kind.

While it is impossible to predict how the traditional and new forms of
systems engineering will evolve in the future, it is clear even now that there
is a long and robust future for all three. Increases in technology complexity

8 Mo Jamshidi

have led to new challenges in architecture, networks, hardware and software
engineering, and human systems integration. At the same time, the scale
at which systems are engineered is exceeding levels that could have been
imagined only a short time ago. As a consequence, all three forms of systems
engineering will be needed to solve the engineering problems of the future,
sometimes separately but increasingly in combination with each other.

This chapter defines three modes of systems engineering, discusses the
challenge space each addresses, describes how they differ from and com-
plement each other, and suggests what their interrelationships should be in
solving engineering problems of the future.

1.3.1.5 Definition, classification, and methodological
issues of system of systems

Bjelkemyr et al., in Chapter 7, present a number of basic issues in SoS, similar
to those discussed in this chapter. They present a generic definition of the
term system of systems. This definition is based both on common definitions
of SoS and on the characteristics that systems that are usually labeled SoS
exhibit. Due to the inclusive nature of this generic definition, a wide range
of sociotechnical systems of very different size and complexity are included
in the concept of SoS. In an attempt to delimit the concept, a classification is
suggested based on the redundancy of higher-level subsystems. Most sys-
tems that traditionally are considered SoS are labeled SoS type I (e.g., Inter-
national Space Station, an integrated defense system, national power supply
networks, transportation systems, larger infrastructure constructions), and
systems with nonredundant subsystems are simply labeled SoS type II, in
this chapter exemplified by a production system. The purpose of this classifi-
cation is partly to advance knowledge of both SoS characteristics and how to
address them, and partly to improve transferring of this knowledge from the
area of traditional SoS to other areas where SoS characteristics are present.

1.3.2 Implementation problems

Aside from many theoretical and essential difficulties with SoS, there are
many implementation challenges facing SoS. Here some of these implemen-
tation problems are briefly discussed, and references are made to some with
their full coverage.

1.3.2.1 Policymaking to reduce carbon emissions
Agusdinata et al., in Chapter 8, present a system-of-systems perspective
combined with exploratory modeling and analysis method as an approach
to deal with complexity and uncertainty in policymaking. The test case is
reduction of CO2 (carbon) emissions, which stems from the interactions of
many independent players involved and the multiple aspects. The uncer-
tainty about the physical and socioeconomic systems is compounded by the

Chapter one: Introduction to system of systems 9

long time horizon the policymaking covers. Using a case of the long-term
carbon emissions in Dutch residential sector, the SoS perspective is used
as a way to decompose the policy issue into interdependent relevant policy
systems. This representation of the policy system provides a framework to
test a large number of hypotheses about the evolution of the system’s perfor-
mance by way of computational experiments, which forms the core of the
exploratory modeling and analysis (EMA) method. In particular, in a situa-
tion where the realized emission level misses the intermediate target in the
year 2025, policies can be adapted, among others, by increasing the subsidy
on energy efficiency measures and tightening the standard for dwelling
energy performance. As some of the system uncertainties are resolved, we
test whether adapting policies can lead to meeting the policy target in the
year 2050. Our approach shows the extent to which the constraints imposed
on the system of systems should be relaxed in order to bring the emission
level back to the intended target. The relaxation of the constraints, which
include among others energy prices, investment behavior, demographic,
and technological developments also point to the different policy designs
that decision makers can envision to influence the performance of a system
of systems.

1.3.2.2 Medical and health management system of systems
In Chapter 9, Hata et al. have bridged a gap between medical systems and
SoS. Such a system is widely used in diagnosis, treatment, and management
for patients. Human health management for healthy persons has considerable
attention as a new application domain in system engineering. In this chapter,
we focus on ultrasonic surgery support, medical imaging, and health man-
agement system of systems engineering. The application domains discussed
here are indeed broad and essential in daily clinical practice and health
management. The first one is systems of systems in medical ultrasonics.
Current modern ultrasonic systems require an integrated system of systems
engineering, i.e., integrated hardware system and modern software system.
This section introduces a novel ultrasonic surgery support system in ortho-
pedic surgery. Second is system of systems in medical imaging. This section
introduces an approach to embed medical expert knowledge into image pro-
cessing based on fuzzy logic. To demonstrate the effectiveness of the new
approach, applications to human brain MR images and orthopedic kine-
matic analysis are introduced. Third is system of systems in human health
management. An idea of health management is introduced and discussed
from the view of system of systems. As its application to human health, sens-
ing and control technology during sleep is focused on because quality and
quantity of sleep has serious influence on our body health.

1.3.2.3 The microgrid as a system of systems
Phillips, in Chapter 10, has introduced electric microgrids as an SoS. The
author points out that microgrids offer exciting possibilities for efficient,

10 Mo Jamshidi

uninterruptible power. A microgrid is a collection of small, non-collocated
electric power sources, storage devices, and power conditioners intercon-
nected to meet the power consumption needs of a designated community.
The general vision is that a microgrid might produce power for a small to
midsize neighborhood, industrial park, or commercial enclave. A microgrid
is different from a power plant primarily because the generators are not col-
located, so it cannot easily be operated, managed, or controlled in a unified
way by a single committee. At the same time, a microgrid, because of the
interconnectivity, can be operated more efficiently than independent sources
of similar capacity; more of the sources at any given point can be operated at
peak efficiency, transmission losses are minimized, and—perhaps the most
enticing thought—significant coproduced heat can be used for space and
water heating and a myriad of industrial uses because the sources are near
the loads. All well and good, but if this is such a great idea, where are all the
microgrids? Unfortunately, fielding a microgrid requires a relatively com-
plex system of systems, only part of which is the already complicated electric
power substrate. In addition, to have significant impact, microgrids need to
operate in conjunction with the primary power grid; this adds to operational
difficulty and forces economic considerations to be taken into account opera-
tionally. In this chapter we delineate and discuss the communication, man-
agement, decision making, and other systems needed for microgrid success.

1.3.2.4 Intelligent decision support system based
on sensor and computer networks

Wu et al., in Chapter 11, have presented an intelligent decision support
system based on sensor and computer networks that incorporates various
subsystems for sensor deployment, data routing, distributed computing,
and information fusion. The integrated system is deployed in a distributed
environment composed of both wireless sensor networks for data collection
and wired computer networks for data processing. For these subsystems, we
formulate the analytical problems and develop approximate or exact solu-
tions: (1) sensor deployment strategy based on a two-dimensional genetic
algorithm to achieve maximum coverage with cost constraints; (2) data rout-
ing scheme to achieve maximum signal strength with minimum path loss,
energy efficiency, and fault tolerance; (3) network mapping method based
on dynamic programming to assign computing modules to network nodes
for distributed sensor data processing; and (4) binary decision fusion rule
that derive threshold bounds to improve system hit rate and false alarm rate.
These subsystems are implemented and evaluated through either experi-
ments or simulations in various application scenarios. The extensive results
demonstrate that these component solutions imbue the integrated system
with the desirable and useful quality of intelligence.

Chapter one: Introduction to system of systems 11

1.3.2.5 Defense applications of SoS
Dickerson, in Chapter 12, takes on the defense applications of SoS. The
author notes that the defense community continues to move toward increas-
ingly complex weapon systems that must support joint and coalition opera-
tions, and the need for system of systems (SoS) engineering becomes more
critical to the achievement of military capabilities. The U.S. Department of
Defense (DoD) and the U.K. Ministry of Defence (MOD) continue to face
a critical challenge: the integration of multiple capabilities across develop-
ing and often disparate legacy systems that must support multiple warfare
areas. Over the past decade, the need for SoS-enabled mission capabilities
has led to changes in policy for the acquisition of systems and the assem-
blage of battle forces. Defense acquisition structures have been reorganizing
in order to integrate acquisition activities in a way that leads to the achieve-
ment of capabilities through a system-of-systems approach rather than from
just the performance of individual systems or platforms. Earlier efforts to
meet the challenge faced by the defense community have included solutions
using network centric operations (NCO) and Network Enabled Capabilities
(NEC). Although progress has been made, future progress can be expected
to depend upon the advancement of the practice of systems engineering at
the SoS level. System of systems engineering (SoSE) processes and practices
must enable the acquisition of systems of systems that support the integra-
tion of multiple capabilities across multiple warfare areas. Recently there has
been extensive debate across a broad community of government, industry,
and academic stakeholders about systems engineering processes and prac-
tices at the SoS level. But whatever form SoSE takes for defense systems, the
technical processes of SoSE must support the realization of mission capa-
bilities attainable from a system of systems that cannot be attained from a
single system. Chapter 12 will focus on SoS initiatives and SoSE technical
processes being used for the development and acquisition of defense sys-
tems of systems. It will begin with the revolution in military affairs that led
to network-centric warfare then show how the concepts of SoSE and network
enablement are intertwined. Together they not only enable mission capabili-
ties but also are key to the integration of capabilities. Key SoS initiatives in
the DoD are discussed. Chapter 12 will conclude with some of the current
activities and emerging research opportunities in SoSE.

1.3.2.6 Systems of air vehicles
Colgren, in Chapter 13, has considered a system of air vehicles as a natural
test bed for an SoS. The author reminds us that a longstanding example of
such a system, developed long before the term system of systems was coined,
is the international airspace system intended for the safe and efficient flight
control of air vehicles. The International Civil Aviation Organization (ICAO),
which manages the international air traffic control (ATC) system, has been

12 Mo Jamshidi

in operation since April 1947. It was built around preexisting international
agreements and regulations as an agency of the United Nations (Ref. 1). It
codifies the principles and techniques of international air navigation and
fosters the planning and development of international air transport to ensure
safe and orderly growth (Ref. 2). It insures standards, such as the interna-
tional use of English for communications and the specific frequency ranges
to be used for these and all other required command and control opera-
tions. The ICAO Council adopts standards and recommended practices for
its 190 member states concerning air navigation, the prevention of unlawful
interference, and for facilitating border crossings for international civil avia-
tion. In addition, the ICAO defines the protocols for air accident investiga-
tions used by transport safety authorities in the signatory countries, also
commonly known as the Chicago Convention. The United States air traffic
control system is managed by the Federal Aviation Administration (FAA)
to provide safe separation of aircraft within U.S. airspace and in and out of
U.S. airports (Ref. 3). While the basic design of the air traffic control system
dates back to the 1950s, this design has been adapted as the demands on the
system’s capacity have continued to rise. The three critical components of the
ATC—communications, navigation, and surveillance—must continuously
be modernized to maintain the safety and efficiency of the air transporta-
tion system. Such updates must be accomplished under international agree-
ments, maintaining global compatibility throughout the ATC system.

1.3.2.7 System of autonomous rovers and their applications
Sahin et al., in Chapter 14, present a typical test bed for system of systems
in the realm of mobile robotics. Here a system of autonomous rovers will
be presented in the context of system of systems. In addition, a system of
homogenous modular micro robots will be presented in the context of sys-
tem of systems. The chapter starts with the introduction of the components
and their roles in the system of autonomous rovers. Then, each system will
be presented focusing on electrical, mechanical, and control characteristics
and their capabilities in the system of autonomous rovers. Robust data aggre-
gation and mine detection are then examined as applications of the system
of autonomous rovers.

1.3.2.8 Space applications of system of systems
Caffall and Michael, in Chapter 15, have started by referring to future
applications of SoS via the popular fictional space program on television—
“Space . . . the Final Frontier. These are the voyages of the starship Enter-
prise. Its five-year mission: to explore strange new worlds, to seek out new
life and new civilizations, to boldly go where no man has gone before.” The
authors asks the question: how many of us heard these words and dreamed
of standing alongside Star Trek’s Captain James T. Kirk and First Officer
Mr. Spock to explore new worlds? Interesting enough, Chief Engineer
Commander Scott performs countless technological miracles as he saves

Chapter one: Introduction to system of systems 13

his beloved USS Enterprise and crew from certain destruction; however,
Scotty never mentions the miracle of the Enterprise as a wonderful system
of systems. Could it be that future engineers solved all the problems of
system of systems? Could it be that Scotty never encountered problems
with the system of systems comprising the Enterprise, freeing him up to
devote his time on advancing the interplanetary communications, warp
engine, phaser, transporter, deflector shield, and other systems of the Enter-
prise? Apparently not, at least as evidenced by, for instance, the emergent
behavior of the Enterprise as it interacts with a (fictitious) legacy unmanned
scientific probe named Voyager 6 whose onboard systems have been recon-
figured and augmented by an alien race. The authors further note that it is
up to us to advance the system-of-systems technology for the development
of a space foundation that, indeed, may lead to the Federation and star
ships. While many folks almost exclusively think of space exploration as
the Shuttle orbiter that has captured worldwide interest for over twenty-
five years, space exploration is multifaceted. The National Aeronautics and
Space Administration (NASA) has a extraordinary history of space explo-
ration to include the Rovers that continue to explore Mars, space telescopes
that can see into deep space, a human-inhabitable space station that orbits
the Earth, unmanned spacecraft that explore the Sun and the planets in our
solar system, and the unforgettable lunar exploration that began on July 20,
1969, as Commander Neil Armstrong stepped onto the Moon’s surface. So,
what is the relationship of space exploration with a system-of-systems con-
cept? Well, let us first consider space exploration missions that are planned
for the next couple of decades.

1.3.2.9 Airport operations: a system-of-systems approach
Nahavandi et al., in Chapter 16, have presented an SoS approach to airport
security. Analysis of airport operations is commonly performed in isolation,
sharing only simple information such as flight schedules. With the increased
concern over security in our airports, a new approach is required whereby
all aspects of the airport operations are considered. A system-of-systems
methodology is proposed and demonstrated through example. This method
provides the decision maker with an improved understanding of the implica-
tion of policy decisions, resource allocations, and infrastructure investment
strategies, through the capture of emergent behaviors and interdependen-
cies. New tools and methodologies are required for model development and
analysis. These tools and methods are presented in this chapter.

1.3.2.10 KASERS in SoS design
Rubin, in Chapter 17, has used KASER (Knowledge Amplification by Struc-
tured Expert Randomization) as a tool for the SoS design. The author
indicates that the U.S. Army needs robotic combat vehicles that can autono-
mously navigate the battlefield and carry out planned missions that neces-
sarily embody unplanned details. On one end of the spectrum lie the simple

14 Mo Jamshidi

insect-like robots that have been popularized by Steel and Brooks [1995].
Their simple behaviors can be evolved, in much the same manner as a simple
program can be created through the use of chance alone. Of course, more
complex behaviors cannot be tractably evolved because the search space here
grows exponentially. What is needed are heuristics to guide the evolution-
ary process. We can of course program search strategies and have indeed
programmed robots to perform a myriad of complex functions—from the
robot Manny’s (U.S. Army) ability to walk the battlefield to unmanned aerial
vehicles (UAVs). What is needed is a means to program more complex and
reliable functionality for constant cost. That is, a system of systems (SoS) is
needed. For example, one can program a robotic vehicle to sense and avoid
an obstacle on the right. But then, what is the cost of programming the same
robot to sense and avoid an obstacle on the left? It should be less and is, to
some extent, if object-oriented component-based programs are written. The
problem here though is that the cost is front loaded. The programmer needs
to know a priori most of the domain symmetries if he or she is to capture them
in the form of objects. A better solution is to do for symbolic programming
what fuzzy logic did for Boolean logic [Zadeh, 1996; Rubin, 1999]. That is, we
need the programmer to be able to constrain the robot’s behavior in the form
of generalized actions. Then, instances of these generalizations constitute the
desired program. Even search-control heuristics can be acquired through the
exercise of this paradigm. Instead of programming the robot to do a specific
action, we program the robot to (heuristically) search a space of actions for
one or more that is consistent with environmental constraints. The writing
of such programs is easier for the human, and the constraints that instantiate
them serve to render the search space tractable for the machine.

1.3.2.11 System-of-systems standards
Johnson, in Chapter 18, discusses a very key issue in SoSE. Standards are
found in every arena of human endeavor. Representative examples are
found in technical specifications, methods of measurement, medical diag-
nostics, judicial procedures, management processes, power distribution,
building codes, information production and categorization, food production
and processing, and financial transactions. Clear standards usually benefit
all the players in a given field or industry; however, there are times when a
standard may allow one group to compete effectively against another, even
though their product may be inferior (e.g., Matsushita VHS versus Sony
Betamax). One current example of the competition for standard supremacy
in the digital video realm is between High Definition (HD) and Blue-ray.
Currently, there are no standards specifically related to system of systems
(SoS) or system of systems engineering (SoSE) products, processes, manage-
ment, or other aspects or endeavors.

This chapter gives some background on standards, how they are used,
and identifies some arenas in which dialogue is pointing to the instantia-
tion of potential standards that could impact and foster future SoS standards

Chapter one: Introduction to system of systems 15

development. The first section provides a discussion of the what, why, and
how of contemporary standards and their development, evolution, appli-
cation, and management. The next section presents SoS standards consid-
erations, pathfinder SoS endeavors and their approaches to standards use
and implementation, and potentially emerging standards. Considerations
are for SoS standards evolution, development, applicability, and manage-
ment. The Future Combat Systems SoS projects approach to the use of stan-
dards to ensure communications interoperability among families of systems
(FoS), and the Global Earth Observation system-of-systems approach to
the identification, registration, and accommodation of disparate standards
are two examples given of pathfinder SoS endeavors and their approaches
to standards use and implementations. Emerging potential SoS standards
and tools are given to wrap up the section on system-of-systems standards.
Final comments conclude the chapter with presentation of the International
Consortium on System of Systems (ICSOS) and discussion of their initial
perspectives concerning SoS standards and the inevitable instantiation of
a committee to guide and oversee SoS standards evolution, development,
usage, application, and management.

Since system-of-systems literature, definitions, and perspectives are marked
with great variability in the engineering community, standards are key need
here. Viewed as an extension of systems engineering to a means of describing
and managing social networks and organizations, the variations of perspec-
tives leads to difficulty in advancing and understanding the discipline. Stan-
dards have been used to facilitate a common understanding and approach to
align disparities of perspectives to drive a uniform agreement to definitions
and approaches. Having the ICSOS—International Consortium on System of
Systems [De Laurentis et al., 2007]—represent to the IEEE and INCOSE for
support of technical committees to derive standards for system of systems
will help unify and advance the discipline for engineering and healthcare.

1.4 Other SoSE issues
In this section, for the benefit of the readers, a wider perspective on system of
systems and system of systems engineering from a recent work by the author
[Jamshidi, 2008] will be given.

1.4.1 Open systems approach to system of systems engineering

Azani [2008], in Jamshidi [2008], has discussed an open systems approach to
SoSE. The author notes that SoS exists within a continuum that contains ad
hoc, short-lived, and relatively simple SoS on one end, and long-lasting, con-
tinually evolving, and complex SoS on the other end of the continuum. Mili-
tary operations and less sophisticated biotic systems (e.g., bacteria and ant
colonies) are examples of ad hoc, simple, and short-lived SoS, while galactic
and more sophisticated biotic systems (e.g., ecosystem, human colonies) are

16 Mo Jamshidi

examples of SoS at the opposite end of the SoS continuum. The engineering
approaches utilized by galactic SoS are at best unknown and perhaps forever
inconceivable. However, biotic systems of systems seem to follow, relatively
speaking, less complicated engineering and development strategies, allow-
ing them to continually learn and adapt, grow and evolve, resolve emerg-
ing conflicts, and have more predictable behavior. Based on what the author
already knows about biotic SoS, it is apparent that these systems employ
robust reconfigurable architectures, enabling them to effectively capitalize
on open systems development principles and strategies such as modular
design, standardized interfaces, emergence, natural selection, conservation,
synergism, symbiosis, homeostasis, and self-organization. Azani [2008] pro-
vides further elaboration on open systems development strategies and prin-
ciples utilized by biotic SoS, discusses their implications for engineering of
man-made SoS, and introduces an integrated SoS development methodology
for engineering and development of adaptable, sustainable, and interoper-
able SoS based on open systems principles and strategies.

1.4.2 SoS integration

Integration is probably the key viability of any SoS. Integration of SoS implies
that each system can communicate and interact (control) with the SoS regard-
less of their hardware, software characteristics, or nature. This means that
they need to have the ability to communicate with the SoS or a part of the
SoS without compatibility issues such as operating systems, communication
hardware, and so on. For this purpose, an SoS needs a common language the
SoS’s systems can speak. Without having a common language, the systems
of any SoS cannot be fully functional, and the SoS cannot be adaptive in the
sense that new components cannot be integrated to it without major effort.
Integration also implies the control aspects of the SoS, because systems need
to understand each other in order to take commands or signals from other
SoS systems. For further insight, see the work by Cloutier et al. [2008] on
network centric architecture of SoS.

1.4.3 Engineering of SoS

Emerging needs for a comprehensive look at the applications of classical sys-
tems engineering issue in SoSE will be discussed in this volume. The thrust
of the discussion will concern the reality that the technological, human, and
organizational issues are each far different when considering a system of sys-
tems or federation of systems and that these needs are very significant when
considering system of systems engineering and management. As we have
noted, today there is much interest in the engineering of systems that are
comprised of other component systems, and where each of the component
systems serves organizational and human purposes. These systems have
several principal characteristics that make the system family designation

Chapter one: Introduction to system of systems 17

appropriate: operational independence of the individual systems, managerial
independence of the systems; often large geographic and temporal distribu-
tion of the individual systems; emergent behavior, in which the system fam-
ily performs functions and carries out purposes that do not reside uniquely
in any of the constituent systems, but which evolve over time in an adaptive
manner, and where these behaviors arise as a consequence of the formation of
the entire system family and are not the behavior of any constituent system.
The principal purposes supporting engineering of these individual systems
and the composite system family are fulfilled by these emergent behaviors.
Thus, a system of systems is never fully formed or complete. Development of
these systems is evolutionary and adaptive over time, and structures, func-
tions, and purposes are added, removed, and modified as experience of the
community with the individual systems and the composite system grows and
evolves. The systems engineering and management of these systems fami-
lies poses special challenges. This is especially the case with respect to the
federated systems management principles that must be utilized to deal suc-
cessfully with the multiple contractors and interests involved in these efforts.
Please refer to the paper by Sage and Biemer [2007] and De Laurentis et al.
[2007] for the creation of an SoS Consortium (ICSOS) of concerned individu-
als and organizations by the author of this chapter. See Wells and Sage [2008]
for more information and challenges ahead in SoSE.

1.4.4 SoS management: the governance of paradox

Sauser and Boardman [2008], in Jamshidi [2008], have presented an SoS
approach to the management problem. They note that the study of SoS has
moved many to support their understanding of these systems through the
groundbreaking science of networks. The understanding of networks and
how to manage them may give one the fingerprint which is independent of
the specific systems that exemplify this complexity. The authors point out that
it does not matter whether they are studying the synchronized flashing of
fireflies, space stations, structure of the human brain, the Internet, the flock-
ing of birds, a future combat system, or the behavior of red harvester ants. The
same emergent principles apply: large is really small; weak is really strong;
significance is really obscure; little means a lot; simple is really complex; and
complexity hides simplicity. The conceptual foundation of complexity is para-
dox, which leads us to a paradigm shift in the SE (systems engineering) body
of knowledge.

Paradox exists for a reason, and there are reasons for systems engineers
to appreciate paradox even though they may be unable to resolve them as
they would a problem specification into a system solution. Hitherto para-
doxes have confronted current logic only to yield at a later date to more
refined thinking. The existence of paradox is always the inspirational source
for seeking new wisdom, attempting new thought patterns, and ultimately
building systems for the “flat world.” It is our ability to govern, not control,

18 Mo Jamshidi

these paradoxes that will bring new knowledge to our understanding on
how to manage the emerging complex systems called system of systems.

Sauser and Boardman [2008] have established a foundation in what has
been learned about how one practices project management, established some
key concepts and challenges that make the management of SoS different
from our fundamental practices, presented an intellectual model for how
they classify and manage an SoS, appraised this model with recognized SoS,
and concluded with grand challenges for how they may move their under-
standing of SoS management beyond the foundation.

1.4.5 Deepwater coastguard program

One of the earliest realizations of an SoS in the United States is the so-
called Deepwater Coastguard Program shown in Figure 1.1. As seen here,
the program takes advantage of all the necessary assets at their disposal,
such as helicopters, aircrafts, cutters, satellite (GPS), ground station, human,
and computers, with all systems of the SoS integrated together to react to
unforeseen circumstances to secure the coastal borders of the Southeastern
United States (e.g., Florida coast). The Deepwater program is making prog-
ress in the development and delivery of mission effective command, control,
communications, computers, intelligence, surveillance, and reconnaissance
(C4ISR) equipment [Keeter, 2007]. The SoS approach, the report goes on, has
improved the operational capabilities of legacy cutters and aircraft, and will
provide even more functionality when the next generation of surface and
air platforms arrives in service. The key feature of the system is its ability
to interoperate among all Coast Guard mission assets and capabilities with
those of appropriate authorities both at local and federal levels.

Figure 1.1 A security example of an SoS—deepwater coastguard configuration in
United States.

Chapter one: Introduction to system of systems 19

1.4.6 Future combat missions

Another national security or defense application of SoS is the future combat
mission (FCM). Figure 1.2 shows one of numerous possible configurations of
an FCM. The FCM system is:

. . . envisioned to be an ensemble of manned and poten-
tially unmanned combat systems, designed to ensure
that the Future Force is strategically responsive and
dominant at every point on the spectrum of operations
from nonlethal to full scale conflict. FCM will provide
a rapidly deployable capability for mounted tactical
operations by conducting direct combat, delivering
both line-of-sight and beyond-line-of-sight precision
munitions, providing variable lethal effect (nonlethal
to lethal), performing reconnaissance, and transport-
ing troops. Significant capability enhancements will be
achieved by developing multifunctional, multimission
and modular features for system and component com-
monality that will allow for multiple state-of-the-art
technology options for mission tailoring and perfor-
mance enhancements. The FCM force will incorpo-
rate and exploit information dominance to develop a
common, relevant operating picture and achieve bat-
tle space situational understanding [Global Security
Organization, 2007].

Figure 1.2 A defense example of an SoS. (Courtesy, Don Walker, Aerospace
Corporation.)

20 Mo Jamshidi

1.4.7 Systems engineering for the Department
of Defense system of systems

Dahmann [2008] in Jamshidi [2008], have addressed the national defense
aspects of SoS. Military operations are the synchronized efforts of people and
systems toward a common objective. In this way from an operational perspec-
tive, defense is essentially a systems-of-systems (SoS) enterprise. However,
despite the fact that today almost every military system is operated as part of a
system of systems, most of these systems were designed and developed with-
out the benefit of systems engineering at the SoS level factoring the role the
system will play in the broader system-of-systems context. With changes in
operations and technology, the need for systems that work effectively together
is increasingly visible. See also Chapter 12 by Dickerson in this book.

1.4.8 Sensor networks

The main purpose of sensor networks is to utilize the distributed sensing
capability provided by tiny, low-powered and low-cost devices. Multiple
sensing devices can be used cooperatively and collaboratively to capture
events or monitor space more effectively than a single sensing device [Srid-
har et al., 2007]. The realm of applications for sensor networks is quite diverse
and includes military, aerospace, industrial, commercial, environmental,
health monitoring, to name a few. Applications include traffic monitoring of
vehicles, cross-border infiltration detection and assessment, military recon-
naissance and surveillance, target tracking, habitat monitoring and struc-
ture monitoring, etc.

The communication capability of these small devices, often with het-
erogeneous attributes, makes them good candidates for system of systems.
Numerous issues exist with sensor networks, such as data integrity, data
fusion and compression, power consumption, multidecision making, and
fault tolerance, all of which make these SoS very challenging just like other
SoS. It is thus necessary to devise a fault-tolerant mechanism with a low
computation overhead to validate the integrity of the data obtained from
the sensors (“systems”). Moreover, a robust diagnostics and decision-mak-
ing process should aid in monitoring and control of critical parameters to
efficiently manage the operational behavior of a deployed sensor network.
Specifically, Sridhar et al. [2007] will focus on innovative approaches to deal
with multivariable multispace problem domain, as well as other issues, in
wireless sensor networks within the framework of an SoS. In this book, see
Chapter 11 by Wu et al. for an SoS approach in treating sensor networks.

1.4.9 Healthcare systems

Under a 2004 Presidential Order, the U.S. Secretary of Health has initiated
the development of a National Healthcare Information Network (NHIN),

Chapter one: Introduction to system of systems 21

with the goal of creating a nationwide information system that can build
and maintain Electronic Health Records (EHRs) for all citizens by 2014. The
NHIN system architecture currently under development will provide a near-
real-time heterogeneous integration of disaggregated hospital, departmental,
and physician patient care data, and will assemble and present a complete
current EHR to any physician or hospital a patient consults [Sloane, 2006].
The NHIN will rely on a network of independent Regional Healthcare Infor-
mation Organizations (RHIOs) that are being developed and deployed to
transform and communicate data from the hundreds of thousands of legacy
medical information systems presently used in hospital departments, physi-
cian offices, and telemedicine sites into NHIN-specified meta-formats that
can be securely relayed and reliably interpreted anywhere in the country.
The NHIN “network of networks” will clearly be a very complex SoS, and
the performance of the NHIN and RHIOs will directly affect the safety, effi-
cacy, and efficiency of healthcare in the United States. Simulation, modeling,
and other appropriate SoSE tools are under development to help ensure reli-
able, cost-effective planning, configuration, deployment, and management
of the heterogeneous, life-critical NHIN and RHIO systems and subsystems
[Sloane et al., 2007]. ICSOS represents an invaluable opportunity to access
and leverage SoSE expertise already under development in other industry
and academic sectors. ICSOS also represents an opportunity to discuss the
positive and negative emergent behaviors that can significantly affect per-
sonal and public health status and the costs of healthcare in the United States
[De Laurentis et al., 2007].

1.4.10 Global Earth Observation System of Systems

Global Earth Observation System of Systems (GEOSS) is a global project con-
sisting of over 60 nations whose purpose is to address the need for timely,
quality, long-term, global information as a basis for sound decision making
[Butterfield et al., 2006]. Its objectives are (1) improved coordination of strate-
gies and systems for Earth observations to achieve a comprehensive, coordi-
nated, and sustained Earth observation system or systems, (2) a coordinated
effort to involve and assist developing countries in improving and sustain-
ing their contributions to observing systems and their effective utilization of
observations and the related technologies, and (3) the exchange of observa-
tions recorded from in situ, in a full and open manner with minimum time
delay and cost. In GEOSS, the

SoSE Process provides a complete, detailed, and sys-
tematic development approach for engineering systems
of systems. Boeing’s new architecture-centric, model-
based systems engineering process emphasizes con-
current development of the system architecture model
and system specifications. The process is applicable to

22 Mo Jamshidi

all phases of a system’s lifecycle. The SoSE Process is
a unified approach for system architecture develop-
ment that integrates the views of each of a program’s
participating engineering disciplines into a single sys-
tem architecture model supporting civil and military
domain applications [Pearlman, 2006].

ICSoS will be another platform for all concerned around the globe to bring
the progress and principles of GEOSS to formal discussions and examina-
tion on an annual basis (Figure 1.3).

1.4.11 E-enabling and SoS aircraft design via SoSE

A case of aeronautical application of SoS worth noting is that of e-enabling
in aircraft design as a system of an SoS at Boeing Commercial Aircraft Divi-
sion [Wilber, 2008]. The project focused on developing a strategy and techni-
cal architecture to facilitate making the airplane (Boeing 787, see Figure 1.4)
network aware and capable of leveraging computing and network advances in
industry. The project grew to include many ground-based architectural com-
ponents at the airlines and at the Boeing factory, as well as other key locations
such as the airports, suppliers and terrestrial Internet service suppliers (ISPs).

Wilber [2008] points out that the e-enabled project took on the task of
defining a system of systems engineering solution to the problem of inter-
operation and communication with the existing numerous and diverse
elements that make up the airlines’ operational systems (flight operations

Satellite

Radiosonde

Radar Profiler
Weather Systems

Integrated Storm
Impact & Response

Measurements &
Analysis

System
Products Responders’

Information

Figure 1.3 SoS of the GEOSS Project. (Courtesy, Jay Pearlman, Boeing Company.)

Chapter one: Introduction to system of systems 23

and maintenance operations). The objective has been to find ways of leverag-
ing network-centric operations to reduce production, operations and main-
tenance costs for both Boeing and the airline customers.

One of the key products of this effort is the “e-enabled architecture.” The
e-enabling architecture is defined at multiple levels of abstraction. There is
a single top-level or “reference architecture” that is necessarily abstract and
multiple “implementation architectures.” The implementation architectures

(a)

Figure 1.4 Application of an SoS for the Boeing 787. (a) Boeing’s 787 Dreamliner. (b)
E-enabling SoS for Boeing 787.

The e-Enabled Story

integrated Flight Deck

Flight Line

BACK
Purchasing &
Warehouse

Operations
Center

Maintenance
Engineering

Hangars

“the real-time connectivity of the
airplane to the ground, the delivery
of information across the
enterprise...”

(b)

24 Mo Jamshidi

map directly to airplane and airline implementations and provide a family
of physical solutions that all exhibit common attributes and are designed to
work together and allow reuse of systems components. The implementation
architectures allow for effective forward and retrofit installations addressing
a wide range of market needs for narrow and widebody aircraft.

The 787 “open data network” is a key element of one implementation of
this architecture. It enabled onboard and offboard elements to be networked
in a fashion that is efficient, flexible, and secure. The fullest implementations
are best depicted in Boeing’s GoldCare architecture and design.

Wilber [2007, 2008] presented an architecture at the reference level and
how it has been mapped into the 787 airplane implementation. GoldCare
environment is described and is used as an example of the full potential of
the current e-enabling.

1.4.12 A system-of-systems perspective on infrastructures

Thissen and Herder [2008], in Jamshidi [2008], have touched upon a very
important application in the service industry. Infrastructure systems (or
infrasystems) providing services such as energy, transport, communica-
tions, and clean and safe water are vital to the functioning of modern society.
Key societal challenges with respect to our present and future infrastruc-
ture systems relate to, among other things, safety and reliability, afford-
ability, and transitions to sustainability. Infrasystem complexity precludes
simple answers to these challenges. While each of the infrasystems can be
seen as a complex system of systems in itself, increasing interdependency
among these systems (both technologically and institutionally) adds a layer
of complexity.

One approach to increased understanding of complex infrasystems that
has received little attention in the engineering community thus far is to focus
on the commonalities of the different sectors, and to develop generic theories
and approaches such that lessons from one sector could easily be applied to
other sectors. The system-of-systems paradigm offers interesting perspectives
in this respect. The authors present, as an initial step in this direction, a fairly
simple three-level model distinguishing the physical/technological systems,
the organization and management systems, and the systems and organiza-
tions providing infrastructure-related products and services. The authors
use the model as a conceptual structure to identify a number of key common-
alities and differences between the transport, energy, drinking water, and
ICT sectors. Using two energy-related examples, the authors further illustrate
some of the system of systems–related complexities of analysis and design at
a more operational level. The authors finally discuss a number of key research
and engineering challenges related to infrastructure systems, with a focus on
the potential contributions of systems-of-systems perspectives.

Chapter one: Introduction to system of systems 25

1.4.13 A system-of-systems view of services

Tien [2008], in Jamshidi [2008], has covered a very important application of
SoS in today’s global village—service industry. The services sector employs a
large and growing proportion of workers in the industrialized nations, and it
is increasingly dependent on information technology. While the interdepen-
dences, similarities, and complementarities of manufacturing and services
are significant, there are considerable differences between goods and ser-
vices, including the shift in focus from mass production to mass customiza-
tion (whereby a service is produced and delivered in response to a customer’s
stated or imputed needs). In general, a service system can be considered to
be a combination or recombination of three essential components—people
(characterized by behaviors, attitudes, values, etc.), processes (characterized
by collaboration, customization, etc.), and products (characterized by soft-
ware, hardware, infrastructures, etc.). Furthermore, inasmuch as a service
system is an integrated system, it is, in essence, a system of systems, and its
objectives are to enhance its efficiency (leading to greater interdependency),
effectiveness (leading to greater usefulness), and adaptiveness (leading to
greater responsiveness). The integrative methods include a component’s
design, interface, and interdependency; a decision’s strategic, tactical, and
operational orientation; and an organization’s data, modeling, and cyber-
netic consideration. A number of insights are also provided, including an
alternative system-of-systems view of services; the increasing complexity of
systems (especially service systems), with all the attendant life-cycle design,
human interface, and system integration issues; the increasing need for real-
time, adaptive decision making within such systems of systems; and the fact
that modern systems are also becoming increasingly more human-centered,
if not human-focused. Thus, products and services are becoming more com-
plex and more personalized or customized.

1.4.14 System of systems engineering in space exploration

Jolly and Muirhead [2008], in Jamshidi [2008], have covered SoSE topics that
are largely unique for space exploration with the intent to provide the reader
a discussion of the key issues, the major challenges of the twenty-first cen-
tury in moving from systems engineering to SoSE, potential applications
in the future, and the current state of the art. Specific emphasis is placed
on how software and electronics are revolutionizing the way space mis-
sions are being designed, including both the capabilities and vulnerabilities
introduced. The role of margins, risk management, and interface control are
all critically important in current space mission design and execution—but
in SoSE applications they become paramount. Similarly, SoSE space missions
will have extremely large, complex, and intertwined command and control
and data distribution ground networks, most of which will involve extensive

26 Mo Jamshidi

parallel processing to produce tera- to petabytes of products per day and
distribute them worldwide.

1.4.15 Robotic swarms as an SoS

As another application of SoS, a robotic swarm is considered by Sahin [2008]
in Jamshidi [2008]. A robotic swarm based on ant colony optimization and
artificial immune systems is considered. In the ant colony optimization, the
author has developed a multiagent system model based on the food-gath-
ering behaviors of the ants. Similarly, a multiagent system model is devel-
oped based on the human immune system. These multiagent system models,
then, were tested on the mine detection problem. A modular micro robot
is designed to perform to emulate the mine detection problem in a basket-
ball court. The software and hardware components of the modular robot are
designed to be modular so that robots can be assembled using hot-swappable
components. An adaptive Time Division Multiple Access (TDMA) commu-
nication protocol is developed in order to control connectivity among the
swarm robots without the user intervention.

1.4.16 Communication and navigation in space SoS

Bahsin and Hayden [2008], in Jamshidi [2008], have taken upon the challenges
in communication and navigation for space SoS. They indicate that commu-
nication and navigation networks provide critical services in the operation,
system management, information transfer, and situation awareness to the
space system of systems. In addition, space systems of systems require system
interoperability, enhanced reliability, common interfaces, dynamic opera-
tions, and autonomy in system management. New approaches to communi-
cations and navigation networks are required to enable the interoperability
needed to satisfy the complex goals and dynamic operations and activities
of the space system of systems. Historically space systems had direct links
to Earth ground communication systems, or they required a space commu-
nication satellite infrastructure to achieve higher coverage around the Earth.
It is becoming increasingly apparent that many systems of systems may
include communication networks that are also systems of systems. These
communication and navigation networks must be as nearly ubiquitous as
possible and accessible on the demand of the user, much like the cell phone
link is available at any time to an Earth user in range of a cell tower. The new
demands on communication and navigation networks will be met by space
Internet technologies. It is important to bring Internet technologies, Internet
protocols (IP), routers, servers, software, and interfaces to space networks to
enable as much autonomous operation of those networks as possible. These
technologies provide extensive savings in reduced cost of operations. The
more these networks can be made to run themselves, the less humans will
have to schedule and control them. The Internet technologies also bring with

Chapter one: Introduction to system of systems 27

them a very large repertoire of hardware and software solutions to commu-
nication and networking problems that would be very expensive to replicate
under a different paradigm. Higher bandwidths are needed to support the
expected voice, video, and data transfer traffic for the coordination of activi-
ties at each stage of an exploration mission.

Existing communications, navigation, and networking have grown in an
independent fashion, with experts in each field solving the problem just for
that field. Radio engineers designed the payloads for today’s “bent pipe”
communication satellites. The Global Positioning satellite (GPS) system
design for providing precise Earth location determination is an extrapola-
tion of the LOng RAnge Navigation (LORAN) technique of the 1950s, where
precise time is correlated to precise position on the Earth. Other space navi-
gation techniques use artifacts in the RF communication path (Doppler shift
of the RF and transponder-reflected ranging signals in the RF) and time
transfer techniques to determine the location and velocity of a spacecraft
within the solar system. Networking in space today is point to point among
ground terminals and spacecraft, requiring most communication paths to/
from space to be scheduled such that communications is available only on
an operational plan and is not easily adapted to handle multidirectional
communications under dynamic conditions.

Bahsin and Hayden [2008] begin with a brief history of the communica-
tions, navigation, and networks of the 1960s and 1970s in use by the first
system of systems, the NASA Apollo missions; it is followed by short discus-
sions of the communication and navigation networks and architectures that
the DoD and NASA employed from the 1980s onward. Next is a synopsis of
the emerging space system of systems that will require complex communica-
tion and navigation networks to meet their needs. Architecture approaches
and processes being developed for communication and navigation networks
in emerging space system and systems are also described. Several examples
are given of the products generated in using the architecture development
process for space exploration systems. The architecture addresses the capa-
bilities to enable voice, video, and data interoperability needed among the
explorers during exploration, while in habitat, and with Earth operations.
Advanced technologies are then described that will allow space system of
systems to operate autonomously or semiautonomously.

1.4.17 National security

Perhaps one of the most talked-about application areas of SoSE is national
security. After many years of discussing the goals, merits, and attributes of
SoS, very few tangible results or solutions have appeared in this or other
areas of this technology. It is commonly believed that,

Systems Engineering tools, methods, and processes
are becoming inadequate to perform the tasks needed

28 Mo Jamshidi

to realize the systems of systems envisioned for future
human endeavors. This is especially becoming evident
in evolving national security capabilities realizations
for large-scale, complex space and terrestrial military
endeavors. Therefore the development of Systems of
Systems Engineering tools, methods and processes is
imperative to enable the realization of future national
security capabilities [Walker, 2007].

In most SoSE applications, heterogeneous systems (or communities) are
brought together to cooperate for a common good and enhanced robustness
and performance.

These communities range in focus from architectures,
to lasers, to complex systems, and will eventually
cover each area involved in aerospace related national
security endeavors. These communities are not devel-
oped in isolation in that cross-community interactions
on terminology, methods, and processes are done
[Walker, 2007].

The key is to have these communities work together to guarantee the com-
mon goal of making our world a safer place for all.

1.4.18 Electric power systems grids as SoS

Korba and Hiskens [2008] in Jamshidi [2008], provide an overview of the
systems of systems that are fundamental to the operation and control of elec-
trical power systems. Perspectives are drawn from industry and academia
and reflect theoretical and practical challenges that are facing power systems
in an era of energy markets and increasing utilization of renewable energy
resources (see also Duffy et al. [2008]). Power systems cover extensive geo-
graphical regions and are composed of many diverse components. Accord-
ingly, power systems are large-scale, complex, dynamical systems that must
operate reliably to supply electrical energy to customers. Stable operation is
achieved through extensive monitoring systems and a hierarchy of controls,
which together seek to ensure that total generation matches consumption,
and that voltages remain at acceptable levels. Safety margins play an impor-
tant role in ensuring reliability, but tend to incur economic penalties. Sig-
nificant effort is therefore being devoted to the development of demanding
control and supervision strategies that enable reduction of these safety mar-
gins, with consequent improvements in transfer limits and profitability.

Chapter one: Introduction to system of systems 29

1.4.19 SoS approach for renewable energy

Duffy et al. [2008] in Jamshidi [2008] have detailed the SoS approach to sus-
tainable supply of energy. They note that over one-half of the petroleum con-
sumed in the United States is imported, and that percentage is expected to
rise to 60% by 2025. America’s transportation system of systems relies almost
exclusively on refined petroleum products, accounting for over two-thirds
of the oil used. Each day, over eight million barrels of oil are required to fuel
over 225 million vehicles that constitute the U.S. light-duty transportation
fleet. The gap between U.S. oil production and transportation oil needs is
projected to grow, and the increase in the number of light-duty vehicles will
account for most of that growth. On a global scale, petroleum supplies will
be in increasingly higher demand as highly populated developing countries
expand their economies and become more energy intensive. Clean forms
of energy are needed to support sustainable global economic growth while
mitigating impacts on air quality and the potential effects of greenhouse gas
emissions. The growing dependence of the United States on foreign sources
of energy threatens her national security. As a nation, the authors assert that
we must work to reduce our dependence on foreign sources of energy in a
manner that is affordable and preserves environmental quality.

1.4.20 Sustainable environmental management from a
system of systems engineering perspective

Hipel et al. [2008] in Jamshidi [2008] have provided a rich range of decision
tools from the field of SE for addressing complex environmental SoS prob-
lems in order to obtain sustainable, fair and responsible solutions to satisfy
the value systems of stakeholders, including the natural environment and
future generations who are not even present at the bargaining table. To bet-
ter understand the environmental problem being investigated and thereby
eventually reach more informed decisions, the insightful paradigm of a sys-
tem of systems can be readily utilized. For example, when developing solu-
tions to global warming problems, one can envision how societal systems,
such as agricultural and industrial systems, interact with the atmospheric
system of systems, especially at the tropospheric level. The great import of
developing a comprehensive toolbox of decision methodologies and tech-
niques is emphasized by pointing out many current pressing environmen-
tal issues, such as global warming and its potential adverse affects, and the
widespread pollution of our land, water, and air systems of systems. To tackle
these large-scale complex systems of systems problems, systems engineering
decision techniques that can take into account multiple stakeholders having
multiple objectives are explained according to their design and capabilities.
To illustrate how systems decision tools can be employed in practice to assist
in reaching better decisions for benefiting society, different decision tools
are applied to three real-world systems of systems environmental problems.

30 Mo Jamshidi

Specifically, the graph model for conflict resolution is applied to the interna-
tional dispute over the utilization of water in the Aral Sea Basin; a large-scale
optimization model founded upon concepts from cooperative game theory,
economics, and hydrology is utilized for systematically investigating the fair
allocation of scarce water resources among multiple users in the South Sas-
katchewan River Basin in Western Canada; and multiple criteria decision
analysis methods are used to evaluate and compare solutions to handling
fluctuating water levels in the five Great Lakes located along the border of
Canada and the United States [Wang et al., 2007].

1.4.21 Transportation systems

The National Transportation System (NTS) can be viewed as a collection of
layered networks composed by heterogeneous systems for which the Air
Transportation System (ATS) and its National Airspace System (NAS) is
one part. At present, research on each sector of the NTS is generally con-
ducted independently, with infrequent and/or incomplete consideration of
scope dimensions (e.g., multimodal impacts and policy, societal, and busi-
ness enterprise influences) and network interactions (e.g., layered dynam-
ics within a scope category). This isolated treatment does not capture the
higher-level interactions seen at the NTS or ATS architecture level; thus,
modifying the transportation system based on limited observations and
analyses may not necessarily have the intended effect or impact. A sys-
tematic method for modeling these interactions with a system-of-systems
approach is essential to the formation of a more complete model and under-
standing of the ATS, which would ultimately lead to better outcomes from
high-consequence decisions in technological, socioeconomic, operational,
and political policy-making context [De Laurentis, 2005]. This is especially
vital as decision makers in both the public and private sector, for example
at the interagency Joint Planning and Development Office (JPDO), which is
charged with transformation of air transportation, are facing problems of
increasing complexity and uncertainty in attempting to encourage the evo-
lution of superior transportation architectures [De Laurentis and Callaway,
2004; De Laurentis, 2008].

Keating [2008], in Jamshidi [2008], has also provided insight into this
important aspect of SoS. Emergent behavior of an SoS resembles the slow-
down of the traffic going through a tunnel, even in the absence of any lights,
obstacles, or accident. A tunnel, automobiles, and the highway, as systems
of an SoS, have an emergent behavior or property in slowing down [Morley,
2006]. Fisher [2006] has noted that an SoS cannot achieve its goals due to its
emergent behaviors. The author explores interdependencies among systems,
emergence, and “interoperation” and develops maxim-like findings such as

Chapter one: Introduction to system of systems 31

these: (1) Because they cannot control one another, autonomous entities can
achieve goals that are not local to themselves only by increasing their influ-
ence through cooperative interactions with others. (2) Emergent composition
is often poorly understood and sometimes misunderstood because it has few
analogies in traditional systems engineering. (3) Even in the absence of acci-
dents, tight coupling can ensure that a system of systems is unable to satisfy
its objectives. (4) If it is to remain scalable and affordable no matter how large
it may become, a system’s cost per constituent must grow less linearly with
its size. (5) Delay is a critical aspect of systems of systems.

1.4.22 System of land, sea, and air vehicles as SoS

One of the more appropriate system of systems at the research level for both
academia and industry is a system of “rovers.” A team of researchers at the
University of Texas, San Antonio ACE (Autonomous Control Engineering)
Center have embarked on a very challenging program to network centric
rovers along all three domains of operations—land, sea and air. Figure 1.5
and Figure 1.6 show some of the work being done at the UTSA-ACE Cen-
ter. Further information can be secured at ace.utsa.edu as well as references
[Azarnoosh et al., 2006; Sahin et al., 2007]. The work is being done on a sys-
tem of UAVs, and then plans are to network heterogeneous combinations
(e.g., underwater vehicles in contact and cooperate with a UAV and that in
turn in contact with a land rover). Other published works of the ACE team
are given in Jaimes et al., 2008; Joordens et al., 2008; Kuma Ray et al., 2008;
Benavidez et al., 2008, Shaneyfelt et al., 2008a,b; Prevost et al., 2008; Nagothu
et al., 2008; and Parisi et al., 2008.

Figure 1.5 A system of land rovers performing a fire-detection task. (Courtesy of
ACE, University of Texas, San Antonio, ace.utsa.edu.)

32 Mo Jamshidi

1.5 Conclusions
This chapter is written to serve as an introduction to the book. We also gave
an up-to-date state of the art in systems of systems and systems of systems
engineering based on other works of the author. The subject matter of this
book is an unsettled topic in engineering in general and in systems engi-
neering in particular. An attempt has been made to cover many open ques-
tions in both theory and applications of SoS and SoSE. It is our intention that
this book would be the beginning of much debate and challenges among and
by the readers of this book. The book is equally intended to benefit industry,
academia or government. A sister volume, by the author, on the subject is
under press at the present time and can give readers further insight into SoS
[Jamshidi, 2008].

References
Abbott, R. 2006, Open at the top; open at the bottom; and continually (but slowly)

evolving. Proc. of IEEE International Conference on System of Systems Engineering,
Los Angeles, April 2006.

Abel, A. and S. Sukkarieh. 2006, The coordination of multiple autonomous systems
using information theoretic political science voting models. Proc. of IEEE Inter-
national Conference on System of Systems Engineering, Los Angeles, April 2006.

ANSI/IEEE. 2000. Recommended practice for architecture description of software-
intensive systems. ANSI/IEEE 1471-2000. Institute of Electrical and Electron-
ics Engineers.

Asimow, M. 1962. Introduction to Design. Prentice-Hall, Englewood Cliffs, NJ.

Figure 1.6 A system of underwater rovers performing a communication task.
(Courtesy of ACE, University of Texas, San Antonio.)

Chapter one: Introduction to system of systems 33

Azani, C. 2008. An open systems approach to system of systems engineering. System
of Systems Engineering—Innovations for the 21st Century, (M. Jamshidi, Ed.), John
Wiley & Sons, New York.

Azarnoosh, H., B. Horan, P. Sridhar, A. M. Madni, and M. Jamshidi. 2006. Towards
optimization of a real-world robotic-sensor system of systems. Proceedings of
World Automation Congress (WAC) 2006, July 24–26, Budapest, Hungary.

Benavidez, P., K. Nagothu, A. Kumar Ray, T. Shaneyfelt, S. Kota, L. Behera, and M.
Jamshidi. 2008. Multi-domain robotic swarm communication systems, Proc.
IEEE System of Systems Engineering Conference, Monterey Bay, CA, June 2–4.

Bhasin, K. B. and J. L. Hayden. 2008. Communication and navigation networks in
space system of systems, in System of Systems Engineering—Innovations for the
21st Century, Chapter 15, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Butterfield, M. L., J. Pearlman, and S. C. Vickroy. 2006. System-of-systems engineer-
ing in a global environment. Proceedings of International Conference on Trends in
Product Life Cycle, Modeling, Simulation and Synthesis PLMSS, 2006.

Carlock, P. G., and R. E. Fenton. 2001. System of systems (SoS) enterprise systems for
information-intensive organizations. Systems Engineering 4(4):242–261.

Cloutier, R., M. J. DiMario, and H. W. Polzer. 2008. Net-centricity and system of sys-
tems. System of Systems Engineering—Innovations for the 21st Century, (M. Jam-
shidi, Ed.), John Wiley & Sons, New York.

Crossley, W. A. 2004. System of systems: an introduction of Purdue University Schools
of Engineering’s Signature Area. Engineering Systems Symposium, March 29–31,
2004, Tang Center–Wong Auditorium, MIT.

Dagli, C. H. and N. K. Ergin. 2008. System of systems architecting. System of Systems
Engineering—Innovations for the 21st Century, (M. Jamshidi, Ed.), John Wiley &
Sons, New York.

Dahmann, J. 2008. Systems engineering for Department of Defense systems of sys-
tems, in System of Systems Engineering—Innovations for the 21st Century, Chapter
9, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Dahmann, J. and K. Baldwin. 2008. Systems engineering for Department of Defense
systems of systems. System of Systems Engineering—Innovations for the 21st Cen-
tury, Chapter 9, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

De Laurentis, D.A. 2005. Understanding transportation as a system-of-systems
design problem. AIAA Aerospace Sciences Meeting and Exhibit, 10–13 Jan.
2005. AIAA-2005-123.

De Laurentis, D. 2008. Understanding transportation as a system-of-systems prob-
lem. System of Systems Engineering—Innovations for the 21st Century, Chapter 20,
(M. Jamshidi, Ed.), John Wiley & Sons, New York.

De Laurentis, D.A. and R. K. Callaway. 2004. A system-of-systems perspective for
future public policy. Review of Policy Research 21(6): 829–837.

De Laurentis, D., C. Dickerson, M. Di Mario, P. Gartz, M. Jamshidi, S. Nahavandi, A.
Sage, E. Sloane, and D. Walker. 2007. A case for an international consortium on
system of systems engineering. IEEE Systems Journal 1(1):68–73.

DiMario, M. J. 2006. System of systems interoperability types and characteristics in
joint command and control. Proc. of IEEE International Conference on System of
Systems Engineering, Los Angeles, April 2006.

Duffy, M., B. Garrett, C. Riley, and D. Sandor. 2008. Future transportation fuel system
of systems. System of Systems Engineering—Innovations for the 21st Century, Chap-
ter 17, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

34 Mo Jamshidi

Fisher, D. 2006. An Emergent Perspective on Interoperation in Systems of Systems, (CMU/
SEI-2006-TR- 003). Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Gladwell, M. 2005. Blink: The Power of Thinking Without Thinking, Little, Brown and
Company, Time Warner Book Group, New York.

Global Security Organization. 2007. Future combat systems—background. http://
www.globalsecurity.org/military/systems/ground/fcs-back.htm.

Hipel, K., A. Obeidi, L. Fang, and D. M. Kilgour. 2008. Sustainable environmental
management from a system of systems engineering perspective. System of Sys-
tems Engineering—Innovations for the 21st Century, Chapter 11, (M. Jamshidi, Ed.),
John Wiley & Sons, New York.

Jaimes, A., J. Gomez, S. Kota, and M. Jamshidi. 2008. An approach to surveillance in
an area using swarm of fixed wing and quad-rotor unmanned aerial vehicles
UAV(s), Proc. IEEE System of Systems Engineering Conference, Monterey Bay, CA,
June 2–4, paper # 1569111991.

Jamshidi, M. 2005. Theme of the IEEE SMC 2005, Waikoloa, Hawaii, USA. http://
ieeesmc2005.unm.edu/, October 2005.

Jamshidi, M. 2008. System of Systems Engineering—Innovations for the 21st Century,
Wiley & Sons, New York.

Jamshidi, M. 2008. Introduction to system of systems engineering. System of Systems
Engineering—Innovations for the 21st Century, Chapter 1, (M. Jamshidi, Ed.), John
Wiley & Sons, New York.

Jolly, S. D. and B. Muirhead. 2008. Communication and navigation networks in space
system of systems. System of Systems Engineering—Innovations for the 21st Cen-
tury, Chapter 15, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Joordens, M., J. Serna, S. Songer, C. Friday, J. Hoy, R. Seiger, W. Madalinski, and M.
Jamshidi. 2008. Low cost underwater robot sensor suite, Proc. IEEE System of Sys-
tems Engineering Conference, Monterey Bay, CA, June 2–4, paper # 1569095252.

Keating, C. B. 2008, Emergence in system of systems. System of Systems Engineering—
Innovations for the 21st Century, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Keeter, H. C. 2007. Deepwater command, communication, sensor electronics build
enhanced operational capabilities. U.S. Coastguard Deepwater Program site,
http://www.uscg.mil/deepwater/media/feature/july07/c4isr072007.htm.

Korba, P. and I. A. Hiskins. 2008. Operation and control of electrical power systems.
System of Systems Engineering—Innovations for the 21st Century, Chapter 16, (M.
Jamshidi, Ed.), John Wiley & Sons, New York.

Kotov, V. 1997. Systems of systems as communicating structures. Hewlett Packard
Computer Systems Laboratory Paper HPL-97-124, pp. 1–15.

Kumar Ray, A., M. Gupta, L. Behera, and M. Jamshidi. 2008. Sonar based autono-
mous automatic guided vehicle (AGV) navigation, Proc. IEEE System of Systems
Engineering Conference, Monterey Bay, CA, June 2–4.

Lopez, D. 2006. Lessons learned from the front lines of the aerospace. Proc. of IEEE Inter-
national Conference on System of Systems Engineering, Los Angeles, April 2006.

Lukasik, S. J. 1998. Systems, systems of systems, and the education of engineers. Arti-
ficial Intelligence for Engineering Design, Analysis, and Manufacturing 12(1):55–60.

Manthorpe, W. H. 1996. The emerging joint system of systems: a systems engineer-
ing challenge and opportunity for APL, John Hopkins APL Technical Digest
17(3):305–310.

Meilich, A. 2006. System of systems (SoS) engineering & architecture challenges in a
net centric environment. Proc. of IEEE International Conference on System of Sys-
tems Engineering, Los Angeles, April 2006.

Chapter one: Introduction to system of systems 35

Mittal, S., B. P. Zeigler, J. L. R. Martin, and F. Sahin. 2008, Modeling and simulation
for systems of systems engineering, Systems Engineering—Innovations for the
21st Century, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Morley, J. 2006. Five maxims about emergent behavior in systems of systems. http://www.
sei.cmu.edu/news-at-sei/features/2006/06/feature-2-2006-06.htm.

Nagothu, K., M. Joordens, and M. Jamshidi. 2008. Distributed protocol for commu-
nications among underwater vehicles, Proc. IEEE System of Systems Engineering
Conference, Monterey Bay, CA, June 2–4, paper # 1569108743.

Parisi, C., F. Sahin, and M. Jamshidi. 2008. A discrete event XML based system of sys-
tems simulation for robust threat detection and integration, Proc. IEEE System of
Systems Engineering Conference, Monterey Bay, CA, June 2–4.

Pearlman, J. 2006. GEOSS—global earth observation system of systems. Keynote pre-
sentation, 2006 IEEE SoSE Conference, Los Angeles, CA, April 24, 2006.

Pei, R. S. 2000. Systems of systems integration (SoSI)—a smart way of acquiring
Army C4I2WS systems. Proceedings of the Summer Computer Simulation Confer-
ence, pp. 134–139.

Prevost, J., M. A. Joordens, and M. Jamshidi. 2008. Simulation of underwater robots
using Microsoft’s Robot Studio©, Proc. IEEE System of Systems Engineering Con-
ference, Monterey Bay, CA, June 2–4.

Rubin, S.H. 1999. Computing with words, IEEE Trans. Syst. Man, Cybern., 29(4):
518–524.

Sage, A. P. and S. M. Biemer. 2007. Processes for system family architecting, design,
and integration. IEEE Systems Journal, ISJ1-1, September, pp. 5–16, 2007.

Sage, A. P. and C. D. Cuppan. 2001. On the systems engineering and management of
systems of systems and federations of systems. Information, Knowledge, Systems
Management 2(4):325–334.

Sahin, F. 2008. Robotic swarm as a system of systems. System of Systems Engineering—
Innovations for the 21st Century, Chapter 19, (M. Jamshidi, Ed.), John Wiley &
Sons, New York.

Sahin, F., M. Jamshidi, and P. Sridhar. 2007. A discrete event XML based simulation
framework for system of systems architectures. Proceedings the IEEE Interna-
tional Conference on System of Systems, April 2007.

Sauser, B. and J. Boardman. 2008. System of systems management. System of Systems
Engineering—Innovations for the 21st Century, Chapter 8, (M. Jamshidi, Ed.), John
Wiley & Sons, New York.

Shaneyfelt, T., S. Kota, and M. Jamshidi. 2008a. Towards net-centric system of systems
robotics in air, sea and land, Proc. IEEE System of Systems Engineering Conference,
Monterey Bay, CA, June 2–4, paper # 1569101444.

Shaneyfelt, T., M. A. Joordens, K. Manoj Nagothu, and M. Jamshidi. 2008b. RF com-
munication between surface and underwater robotic swarms, Proc. World Auto-
mation Congress, Waikoloa, HI, September 28–October 2.

Sloane, E. 2006. Understanding the emerging national healthcare IT infrastructure.
24×7 Magazine. December, 2006.

Sloane, E., T. Way, V. Gehlot, and R. Beck. 2007. Conceptual SoS model and simula-
tion systems for a next generation National Healthcare Information Network
(NHIN-2). Proceedings of the 1st Annual IEEE Systems Conference, Honolulu, HI,
April 9–12, 2007.

Sridhar, P., A. M. Madni, M. Jamshidi. 2007. Hierarchical aggregation and intelligent
monitoring and control in fault-tolerant wireless sensor networks. IEEE Systems
Journal 1(1):38–54.

36 Mo Jamshidi

Steels, L. and R. Brooks (Eds.). 1995. The Artificial Life Route to Artificial Intelligence:
Building Embodied, Situated Agents, Mahwah, NJ: Lawrence Erlbaum Assoc.

Thissen, W. and P. M. Herder. 2008. System of systems perspectives on infrastruc-
tures. System of Systems Engineering—Innovations for the 21st Century, Chapter
11, (M. Jamshidi, Ed.), John Wiley & Sons, New York.

Tien, J. M. 2008. A system of systems view of services. System of Systems Engineering—
Innovations for the 21st Century, Chapter 13, (M. Jamshidi, Ed.), John Wiley &
Sons, New York.

Walker, D. 2007. Realizing a corporate SOSE environment. Keynote presentation,
2007 IEEE SoSE Conference, San Antonio, TX, 18 April 2007.

Wang, L., L. Fang, and K. W. Hipel. 2007. On achieving fairness in the allocation
of scarce resources: measurable principles and multiple objective optimization
approaches. IEEE Systems Journal 1(1):17–28, 2007.

Wells, G. D. and A. P. Sage. 2008. Engineering of a system of systems. System of Sys-
tems Engineering—Innovations for the 21st Century, (M. Jamshidi, Ed.), John Wiley
& Sons, New York.

Wilber, F. R. 2007. A system of systems approach to e-enabling the commercial airline
applications from an airframer’s perspective. Keynote presentation, 2007IEEE
SoSE Conference, San Antonio, TX, 18 April 2007.

Wilber, F. R. 2008. Boeing’s SOSE approach to e-enabling commercial airlines, System
of Systems Engineering—Innovations for the 21st Century, (M. Jamshidi, Ed.), John
Wiley & Sons, New York.

Wojcik, L. A. and K. C. Hoffman. 2006. Systems of systems engineering in the enter-
prise context: a unifying framework for dynamics. Proc. of IEEE International
Conference on System of Systems Engineering, Los Angeles, April 2006.

Zadeh, L.A. 1996. Fuzzy logic = computing with words, IEEE Trans. Fuzzy Syst., 4(2):
103–111.

37

chapter two

SoS architecture
Reggie Cole

Contents

2.1 Introduction.. 37
2.2 Architecture principles and practices .. 41

2.2.1 The architecture design process .. 41
2.2.1.1 Analysis ... 41
2.2.1.2 Synthesis..42
2.2.1.3 Evaluation ...43

2.2.2 Architecture design principles ..44
2.2.2.1 Needs often compete ...45
2.2.2.2 Needs change over time ...45
2.2.2.3 Resource availability constrains the solution space46
2.2.2.4 Design compromise is necessary...................................46

2.3 SoS architecture considerations .. 47
2.3.1 Autonomy ...48
2.3.2 Complexity ... 49
2.3.3 Diversity .. 49
2.3.4 Integration strategy ... 49
2.3.5 Data architecture ... 52
2.3.6 System protection ..54

2.4 Critical success factors in architecting SoS solutions55
2.4.1 Robust design ...55
2.4.2 Architecture alignment ..56
2.4.3 Architecture governance ..56
2.4.4 Architecture description .. 57

2.5 Architecture frameworks ...58
References ..68

2.1 Introduction
Along with defining the problem, one of the most important jobs of the sys-
tems engineer is to partition the problem into smaller, more manageable
problems and make critical decisions about the solution. One of the most

38 Reggie Cole

critical decisions is the architecture—the fundamental organization of a sys-
tem embodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution [1]. While
it is impossible to understand all the characteristics and consequences of
the architecture at the time the system is designed, it is possible to produce
a system architecture that maximizes the ability of the system to meet user
needs, while minimizing the unintentional consequences.

In one sense, architecting a complex system that is comprised of a number
of collaborating independent systems is no different than designing a simple
system. Both start with definition of a problem and conception of solution.
Both warrant consideration of environmental context. Both involve analysis
of factors related to effectiveness. And both require design compromises and
balancing of competing priorities. The basic process is the same. In fact, it has
been well documented for nearly 50 years [2]. But compared to the design
of simple systems, the complexity of designing a system-of-systems (SoS)
solution is daunting, and the design process must be approached with that
complexity in mind.

Figure 2.1 shows the basic SoS model. Notice that the system elements of
the SoS are themselves systems. They address their own needs and solve
their own specific problems. They have their own emergent properties. In
fact, they have their own purpose for existing. But they are also part of a
larger system—the SoS—which itself addresses a need and has emergent
properties, resulting from the interaction of systems within the SoS. The
need to maintain autonomy while at the same time operating within the SoS
context greatly increases the complexity of an SoS and is at the heart of the
SoS architecture challenge [3].

System
Element

System
Element

System
Element

System Elements
and Interactions

Related
System

Related
System

System-of-System
Interactions

System-of-Systems
Environment

Emergent
Properties

System

Emergent
Properties

Emergent
Properties

Emergent
Properties

Figure 2.1 The basic SoS model.

Chapter two: SoS architecture 39

System-of-systems architecture is primarily concerned with the archi-
tecture of systems created from other autonomous systems. There are
two important architecture disciplines that are closely related to SoS
architecture. First, there is system architecture, which is principally con-
cerned with the people, activities, and technologies—including structure
and behavior—that make up an autonomous system within an enter-
prise. While it will normally interact with other autonomous systems in
the enterprise to maximize the capabilities of the enterprise, its core func-
tions should not be dependent on those systems. Next, there is enterprise
architecture, which is primarily concerned with organizational resources
(people, information, capital, and physical infrastructure) and activities [4].
Figure 2.2 illustrates the SoS context. While the SoS architect must consider
characteristics of component systems that comprise the SoS, the design of
those systems is not their main focus. The SoS architect must also consider
the larger enterprise context of the SoS, but the enterprise architecture is
the primary concern of the enterprise architect. In fact it is often necessary
for the SoS architect to consider multiple enterprises, since it is not uncom-
mon for an SoS to cross enterprise boundaries.

Consider a practical SoS problem, illustrated in Figure 2.3, which will be
used throughout the chapter. In this example a North American company
acquires two other companies—one from the Pacific Rim and one from
South America—to form a larger multinational corporation that will pro-
vide integrated wireless services for customers in North America, South
America, and the Pacific Rim. The new integrated transcontinental wireless
network (ITWN) will require the architecting of an SoS solution comprised

SystemSystem

System

SystemSystem

System

System

System

System

System

System

Enterprise A Enterprise B

Standalone System
Within an Enterprise

System of Systems
Within an Enterprise

System of Systems �at
Crosses Enterprises

Figure 2.2 The SoS context.

40 Reggie Cole

of existing networks owned and operated by the newly formed units. Here
is the SoS problem in a nutshell:

Need:•	
Create a transcontinental network that provides integrated wireless •	
services to customers in North America, South America, and the
Pacific Rim.
Make use of existing resources owned by the newly formed •	
enterprise.

Resources:•	
Several wireless networks in North America, all connected via the •	
wide-area optical network owned by the North American Unit.
Several wireless networks in the Pacific Rim, all connected via a •	
satellite communications (SATCOM) system owned by the Pacific
Rim Unit.
Several wireless networks in South America, all operated as inde-•	
pendent, standalone networks by the South American Unit.

Constraints:•	
Minimize changes to existing networks.•	
Continue to provide optical transport services in North America.•	
Continue to provide SATCOM services using the Pacific Rim SAT-•	
COM system

The various networks in the newly formed network will continue to
serve their basic need. The North American optical network will continue
to provide general transport services to customers, in addition to connect-
ing the regional wireless networks; and the Pacific Rim SATCOM system

Regional
Network

Infrastructure

Regional Wireless Network

Pacific Rim Unit

SATCOM System Wide-Area Optical Network

Regional
Network

Infrastructure

Regional Wireless Network

Regional
Network

Infrastructure

Regional Wireless Network

Uses Uses

North American Unit

South American Unit

Figure 2.3 Integrated transcontinental wireless network.

Chapter two: SoS architecture 41

will continue to provide SATCOM services all over the Pacific Rim, in addi-
tion to connecting the regional wireless networks. Forming the ITWN will
require creating an SoS solution that provides new capabilities created from
the integration of existing networks, while continuing to serve the primary
needs of the standalone networks.

This SoS example highlights many of the unique challenges of architect-
ing SoS solutions—and there are many—but there are also some basic ideas
that apply to all types of architecture design problems. After discussing
those basic ideas—the architecture design process and architecture prin-
ciples that apply equally to the architecting of all types of systems—we will
discuss special considerations and critical success factors for architecting
SoS solutions.

2.2 Architecture principles and practices
Architecture design begins with the recognition of a need, statement of the
problem, and the articulation of a solution strategy. It continues with solution
synthesis and analysis of alternatives. It ends with an architecture model—a
blueprint of the system to be built [5]. While the process is pretty straightfor-
ward, it is complicated by the fact that design does not flow logically from
needs. Design is a truly human endeavor. While all designs are ultimately
driven by needs and tend to build on previous solutions, design involves
compromise, and there is no simple recipe for making the necessary compro-
mises [6]. There is, however, a well-defined process for architecting systems
and a set of time-honored principles for navigating the solution space.

2.2.1 The architecture design process

The basic architecture design process, shown in Figure 2.4, starts with analy-
sis of needs, proceeds with solution synthesis, and completes with evalu-
ation of the solution to meet the stated needs [7]. The architecture design
process includes the following:

Analysis—analysis of needs•	
Synthesis—synthesis of solutions•	
Evaluation—evaluation of solutions•	

2.2.1.1 Analysis
Sometimes the needs are well understood and even clearly communicated
through requirements. But it is rare that all needs are understood, much less
documented in the form of concise requirements. Regardless of whether the
needs are communicated concisely and thoroughly via requirements or com-
municated using simple needs statements or operational concept descrip-
tions, it is nonetheless the job of the architect to fully understand the needs.

42 Reggie Cole

If the needs have been thoroughly examined, with most contradictory
and infeasible requirements removed, and concisely communicated, the job
of analyzing needs is certainly easier and less time consuming than might
otherwise be the case. Moreover, it is not uncommon for stated needs to be
based on perception or popular beliefs. While needs that are merely per-
ceived cannot be ignored, the designer must be able to separate them from
real needs. The analysis step is critical, and its omission generally results in
risk to the remaining steps.

While understanding needs is critically important, understanding solu-
tion constraints cannot be overlooked. It is impossible to produce an effective
design without fully considering the constraint space. In some cases con-
straints can drive the design just as much as needs. This is especially true for
SoS, where solutions are based largely on existing systems and infrastruc-
ture. While these resources provide a rich base from which to construct new
solutions, they also constrain the solution in a significant way.

2.2.1.2 Synthesis
The next step in the architecture design process is design synthesis. This
step in the process is largely a transformation step, in which needs and con-
straints are transformed into solution designs. While the steps before and
after are primarily analytical steps, synthesis is more creative. This is where
the designer puts pen to paper and the innovative juices start to flow—where
invention happens. Synthesis is where all the competing needs and vexing

The Iterative
Nature of

Architecture
Design

Evaluation

Synthesis

Analysis
The Serial
Nature of

Architecture
Design

The Architecture Design Process

Description of Needs
User requirements
Operational concepts
Statement of needs

Description of Solution
Architecture model
Lower level requirements
Implementation concept

Implementation
Issues

Feasibility
Issues

Figure 2.4 The architecture design process.

Chapter two: SoS architecture 43

constraints are merged into a solution. There is no recipe for this part; it is a
truly human endeavor.

To get a true perspective on the nature of synthesis, let us imagine the
lone designer sitting down to synthesize a solution. Even in this modern age,
the tools are not that elaborate—perhaps a sheet of calculation paper, a cock-
tail napkin, a whiteboard—not really that different from inventors of the
past. Their most important tool by far is the human mind and its ability to
synthesize. The process of synthesis is a story of conflict. The designer must
make tough decisions about which characteristics are more important than
others, where to make trade-offs, where to stand firm on a particular aspect
of the solution, and where to make compromises.

Now, imagine that the problem is too large for one person to tackle alone.
Imagine a room filled with designers, each gathered around a whiteboard,
each facing the same dilemma as the lone designer, each making critical
decisions in their own mind about the necessary compromises, and not all
coming to the same conclusion. It is a much tougher problem than the one
faced by the lone designer. Now, imagine the real world. Not only is the
problem usually too large for an individual designer to tackle it alone, but
the skills needed to solve the problem tend to be geographically distributed.
Now, each designer or team of designers is tackling the same dilemma, sepa-
rated by space and often time. Now, add in the SoS perspective, where design
decisions must account for many more factors, including operations and sus-
tainment of existing systems, along with politics, economics, and risks that
come with a complex SoS environment.

Synthesis does not end when the designers have come up with a solution.
The solution has to be evaluated, which requires that it be modeled in a way
that will support evaluation. And in fact, one design is not enough. Due to the
subjective nature of synthesis and the natural limitations of the human mind,
the goodness of a design can only be truly evaluated by comparing it to other
designs [1]. The output of the synthesis process is a set of alternative solutions
that are modeled with sufficient detail to allow evaluation to proceed.

2.2.1.3 Evaluation
The final step in the design process is evaluation. First and foremost is the
evaluation of the design alternatives that resulted from design synthesis.
From the perspective of the architecture design process, the means for eval-
uating the alternatives is less important than the fact that multiple design
alternatives are identified and evaluated with respect to a set of criteria. The
importance of evaluating multiple alternatives cannot be overemphasized—
it is a cornerstone of the architecture design process.

However, evaluation of alternatives is not the only aspect of design evalua-
tion; there are other concerns as well. The most significant among those con-
cerns, the two that tend to overshadow all others, are cost and capability. It is
not surprising that cost and capability tend to drive selection and refinement

44 Reggie Cole

of the final design. In fact, it is this fundamental economic problem of maxi-
mizing capability while minimizing cost that drives much innovation.

Aside from their ability to segregate the alternatives and allow the
down-selection to a single “best” alternative, cost and performance evalu-
ations are also likely to drive much of the design optimization. Evaluation
is the stage in architecture design where critical refinements occur. Designs
are simplified to eliminate unnecessary complexity, reduce costs, reduce
risks, and improve dependability; lower-cost substitutes for component
solutions are explored and evaluated; and most significantly, performance
is optimized.

The architecture design process fits within a larger context of the systems
engineering lifecycle, depending on inputs (description of needs) and pro-
ducing outputs (solution description). But this larger process is also itera-
tive, with implementation issues potentially resulting in architecture design
rework and resolution of feasibility problems. It is not uncommon to discover
during design synthesis that the necessary technologies for solutions to meet
needs are too immature to be useful in an operational environment. And it is
quite common to find that all solutions resulting from design synthesis fall
short of meeting performance or cost targets.

The output of the architecture design process is the solution description.
There are three critical aspects of the solution that must be described. The
first aspect is the architecture model—the blueprint of the solution—which
communicates the solution to those who will implement and use it. The sec-
ond aspect is the lower-level requirements, including interface requirements,
which constrain the design and implementation of entities within the archi-
tecture. The third aspect is the implementation concept, which describes the
strategy for implementing the solution.

One of the most critical decisions in the architecture design process is
to determine when design is complete. This decision is made difficult by
the fact that, in any engineering problem, analysis, synthesis, and evalua-
tion are never truly done. Design refinement continues and implementa-
tion problems continue to emerge until the system is delivered and is put
into operation. In fact, they continue throughout the system lifecycle. But
at some point the decision must be made to baseline the architecture and
move to the next stage of lower-level design. The goal of the architecture
design process is to do enough analysis, design, and evaluation to allow
the later stages of design refinement and implementation to proceed with
an acceptably low risk that the architecture will need to be significantly
reworked.

2.2.2 Architecture design principles

Beyond the basic steps for performing architecture design discussed in the
previous section, a set of guiding principles is needed. Mayhall lays out a
comprehensive set of principles that govern all types of engineering design

Chapter two: SoS architecture 45

[8]. Those principles provide the foundation for the four architecture design
principles discussed here, principles that must be taken into account in the
architecting of all systems. The four principles are:

Needs often compete.•	
Needs change over time.•	
Resource availability constrains the solution space.•	
Design compromise is necessary.•	

2.2.2.1 Needs often compete
The problem with needs is that they have a tendency to compete. That is,
the full set of needs tend to call for solutions that compete with each other.
In a motor vehicle, for instance, the need for fuel efficiency and power (both
legitimate needs) tend to compete with each other. The designer has to deal
with these competing needs and must do it in a way that strikes the right
balance between fuel efficiency and responsiveness. Striking that balance
involves sacrificing the optimal satisfaction of one need in order to satisfy
some competing need to an acceptable degree.

2.2.2.2 Needs change over time
The viability of a solution cannot be evaluated without consideration of the
circumstance that drives the need for it. Consider the problem of people
communicating quickly, over long distances. That need was satisfied in the
nineteenth century with the telegraph. While the telegraph was a pretty
good solution to that problem in the nineteenth century, it would be com-
pletely inadequate today—the need has changed. While the basic need for
long-distance communication still exists today, it has become much more
elaborate, due in large part to the advancement of technology and expecta-
tions of users.

It takes time to design and build systems. Analysis, synthesis, and evalua-
tion take time; implementation, testing, and deployment take time; and time
is required for solutions to take shape. Moreover, it is the need, not at the time
of conception or even at the time the system is placed into operation, that is
really important, rather the need that is present in the prime of the system
lifecycle. And it is not uncommon for systems to be in operation for decades
before adequate resources are available to replace them. When a clear need
is present at the same time as the available resources, circumstances are right
for a potential solution. And when those circumstances persist for a suffi-
cient length of time, one that is adequate for design and implementation to
properly play out, then a solution to a problem can be realized. User need is
both a necessary friend and an unwilling adversary when it comes to archi-
tecting systems.

46 Reggie Cole

2.2.2.3 Resource availability constrains the solution space
The design, implementation, operation, and sustainment of all systems depend
on the availability of resources. The first, and arguably the most critical resource
is money. Building complex systems is not cheap. Without capital investment, it is
impossible to bring teams of people together to perform analysis, synthesis, and
evaluation activities, procure the necessary technology components, integrate
and test the system, put it into operation, and sustain it throughout its lifecycle.

But money alone is not enough. People possess another critical resource—
knowledge and skill—without which it is impossible to design, implement,
test, deploy, and operate complex systems. And it is not always possible to buy
the required knowledge and skill. Consider early development of long-span
suspension bridges [9]. While there was certainly a need for these bridges
and probably the money to build them long before they were actually built,
the required knowledge and skill was lacking, and the absence of that criti-
cal resource was an obstacle to their design and construction.

The availability of necessary technologies is also a critical resource. Net-
work-centric systems—distributed systems that are connected via communica-
tion networks—would not be possible without high-speed computing platforms,
high-bandwidth, low-latency communications networks and ubiquitous capac-
ity in both. A special case of technology resources—availability of existing sys-
tems and infrastructure—is especially relevant to SoS architecture.

2.2.2.4 Design compromise is necessary
The final principle—the necessity for design compromise—is an inevitable
result of the first three principles. Design is driven by needs—which have a
tendency to compete and change over time—and is constrained by resource
availability. Compromise is necessary to create a solution that strikes a bal-
ance among the competing needs; compromise is necessary to create a solu-
tion that is robust in the presence of changing needs; and compromise is
necessary to deal with resource constraints. It is a dilemma, and there is no
easy way out. The necessity for compromise is unavoidable.

A critical decision related to design compromise is the degree to which
resource constraints will be allowed to drive the solution before attempting
to change the constraint space. Sometimes the reliance on existing technolo-
gies overconstrains the solution space to the degree that needs cannot be
met. It is often necessary in such cases to invest in a technology development
initiative to shift the resource constraint space.

A related problem is the need to balance top-down analysis and synthe-
sis with bottom-up analysis and synthesis. It is important to do top-down
analysis to ensure that the most important problems are being adequately
addressed and the design is not being driven by point solutions. However,
there is a danger with ignoring bottom-up analysis [10]. The more constrained
the technology resources space is, the more important it is to do thorough
bottom-up analysis and synthesis. And since SoS architecture depends very

Chapter two: SoS architecture 47

heavily on the use of existing systems and infrastructure, it is critical that
adequate attention is given to bottom-up analysis.

Consider the ITWN example discussed earlier. The regional networks all
need to be connected. An analysis of alternative solutions indicated that the
most cost-effective approach would be to lease transport services from a major
international carrier. But that would not meet the business need of leveraging
the investment in the existing SATCOM system. So, the architecture decision
to use excess capacity in the SATCOM system, illustrated in Figure 2.5, was in
the end a design compromise to accommodate a business need.

The principle of compromise drives the architect to create a total system
solution that integrates all design drivers, both needs and constraints; makes
necessary compromises that strike a healthy balance among competing
needs; and makes necessary design compromises to deal with constraints.
In the end, since all designs are a result of compromise, there is really no
perfect design, just those that are less flawed than others [6].

2.3 SoS architecture considerations
While the architecture design process and architecture design principles apply
to system architecting at all levels, the architecting of SoS solutions requires
some special considerations. Those considerations include the following:

Autonomy•	
Complexity•	

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Regional Wireless
Network

Pacific Rim Networks South American Networks

North American Networks

Figure 2.5 Transcontinental wireless network physical connectivity.

48 Reggie Cole

Diversity•	
Integration strategy•	
Data architecture•	
System protection•	

2.3.1 Autonomy

The SoS elements are themselves autonomous systems. They have their
own stakeholders and their own mission in their respective enterprise; they
have their own business processes, management organizations, and operat-
ing budgets; they are autonomous systems, and they need to maintain that
autonomy even after SoS integration. Simply stated, SoS integration cannot
do something that compromises the integrity of the systems that make up
the SoS. There are two key aspects of system autonomy that must be pre-
served: technical autonomy and operational autonomy.

Technical autonomy is related to platforms, interfaces, and infrastruc-
ture of the existing systems. The integrity of external interfaces must be
preserved, as they could be critical to the primary mission of the system.
Those external interfaces may in fact have little to do with the SoS solution.
Nonetheless, they have to be preserved. The integrity of system platforms
also needs to be preserved. It is not uncommon for an SoS solution to appear
sound, only to have later evaluation uncover the need for major unplanned
upgrades to existing platforms. Such a situation is likely to place undue bur-
den on sustainment of the existing system and could put its primary mission
in jeopardy.

There are also infrastructure considerations. It is quite common for an SoS
solution to require major unplanned infrastructure improvements, which
will certainly affect capital budgets for operating and sustaining existing
systems. It is often necessary to disrupt the technical autonomy of systems
when they become part of a larger SoS but it is important that changes are
planned and technical autonomy is reestablished.

Operational autonomy is related to organizations and business processes.
Organizations within the enterprise are structured to operate and sustain
systems. Those organizations have business processes for operating and sus-
taining their organic systems. There are also organizational relationships
with other enterprises, related to the systems in each of those enterprises.
Organizations, organizational relationships, and business processes are at
the heart of the operational architecture of an enterprise. It is important to
preserve the operational autonomy of systems when they become part of
a larger SoS. Like technical autonomy, it is often necessary to disrupt the
operational autonomy of individual systems in the SoS, but it is critical that
the operational autonomy be reestablished.

Chapter two: SoS architecture 49

2.3.2 Complexity

The use of existing systems to create SoS solutions introduces unavoidable
complexities, both in terms of constraints and consequences. Existing sys-
tems and infrastructure provide a good starting point, since they are already
in place, but they also constrain the solution. These constraints are not typi-
cally straightforward, and rarely are they well documented. There are often
elements in place to support existing systems which have little value from an
SoS perspective. Unfortunately, they add complexity to the SoS solution. It is
a sort of tax for using existing systems and infrastructure.

Another aspect of complexity in the SoS is the natural specialization and
optimization of systems to perform their primary function. The basic laws
of economics result in systems that become specialized for solving their spe-
cific problem in the most cost-effective way. While specialization and opti-
mization are good for autonomous systems, they result in different solution
approaches that are often incompatible. Dealing with the incompatibilities
typically requires the introduction of “bridges” into the SoS solution, which
again add complexity.

Finally, there is the problem of fuzzy functional architecture partitions
[11], the gaps and overlaps in functional responsibilities. The need to preserve
technical autonomy often means that multiple systems in an SoS will perform
similar or even identical functions, and often do so in very different ways.

2.3.3 Diversity

The systems that comprise an SoS are diverse. While that is often good from
a robustness perspective—reducing common-mode weaknesses—it also
creates challenges for the SoS architect. The first challenge is diversity of
needs. Each system in an SoS was likely motivated by a certain set of needs,
which tends to change over time. As the circumstances that drove the pri-
mary need changes, so does the business case for the system itself. Changing
stakeholder needs for the systems within an SoS will likely lead to different
evolutionary paths. Diverging needs of systems within an SoS can literally
rip the SoS solution apart.

The second challenge is environmental diversity. Since each system in an
SoS is likely to be managed separately, with separate budgetary constraints,
political environments, and leaders, they are each subject to a different set of
forces that shape their evolution. Like diverging needs, diverging environ-
ments can also be a source of great strain on any SoS solution.

2.3.4 Integration strategy

Normally, when a system is architected, the system is partitioned into the
various entities, each having a core set of responsibilities within the sys-
tem, and each designed to be integrated to form the overall system. That is

50 Reggie Cole

not typically true for an SoS. The SoS is made up of autonomous systems
that were not principally designed as part of a component in larger system.
Beyond the known external interfaces, it is unlikely they were designed with
external integration in mind.

Three basic integration problems must be addressed in creating the SoS.
The first and most obvious is physical integration. It is unlikely that all
systems with the SoS use compatible interface protocols. While the rising
demand for SoS solutions has (at least in part) led to a decrease in protocol
diversity and an increase in standardization, there are still needs for differ-
ent protocols. Systems evolve independently, with their own set of optimi-
zation and specialization drivers. The natural result is the use of different
protocols, many of which are nonstandard. This physical integration prob-
lem has to be solved.

The second problem is functional integration. Since existing systems serve
as building blocks for the SoS, functions performed by the different systems in
the SoS must be integrated and deconflicted. Fuzzy functional partitions are
a result of multiple systems carrying out similar or identical functions. Since
systems within the SoS need to preserve their technical autonomy, functional
isolation (or damping) is often required. Functional isolation involves isolat-
ing the functions of one system with the SoS from functions being performed
by another system in the SoS. Functional damping involves muting certain
aspects of system functions to allow systems to play well together.

The third problem is semantic integration. Semantic integration has to do
with how signals or data are interpreted by different systems. For example,
suppose an SoS consists of three different systems that each provide their
status to each other. Each of them is likely to define status according to their
own needs. Table 2.1 shows an example of the semantic integration problem
using something as simple as status.

Table 2.1 Semantic Integration Example (Status Semantics)

System Name for “Status” Meaning of Status

System A state binary state (up or down)
System B mode operating mode (normal, degraded or offline)
System C health detailed state of health:

subsystem X status•	
on line or off line −

subsystem Y status•	
subsystem state −

on line or off line•	
subsystem connection status −

connected or not connected•	
subsystem Z status•	

state (normal or initializing) −
mode (control or monitor) −

Chapter two: SoS architecture 51

There are two basic solution strategies for integrating systems within the
SoS, strategies that address physical, functional, and semantic integration
aspects. The first strategy—and probably the most common—is SoS bridging,
which involves introducing a new system that has the responsibility of deal-
ing with physical, functional, and semantic integration aspects. The second
strategy is the SoS refactoring, which involves modifying existing systems
in such a way that makes bridging unnecessary. There are good reasons
for adopting each of these strategies, but ultimately the SoS architect must
decide which will be used.

Figure 2.6 illustrates SoS bridging, and Figure 2.7 illustrates SoS refactoring.
The bridging approach, based on the combination of two well-documented
design patterns (the adapter and the bridge [12]), has the advantage that it
minimizes the modification to existing systems, with most physical, func-
tional, and semantic integration requirements being satisfied by the SoS
Bridge. But bridging adds complexity to the solution and can be burdensome
from operations and sustainment perspectives. The refactoring approach
typically minimizes SoS complexity, makes the SoS easier to operate, and
increases sustainability but is usually more expensive in the near term and
more disruptive to existing systems.

Most SoS architectures—at least initially—employ bridging. It offers a lower-
risk approach to integrating systems and tends to be less expensive in the near
term. But given that the result is often more complex and less operable/sustain-
able, it is necessary to evaluate the benefit of employing a refactoring strategy,
either initially or at some time after the initial SoS is placed into operation.

Consider the application of bridging in the ITWN example. While North
America and South America use compatible wireless protocols, the Pacific

SoS
Bridge

Existing
System

Existing
System

Existing
System

Existing Systems
(And �eir External Systems)

New Systems
& Interfaces

Minor Modifications
to Existing Systems

Figure 2.6 SoS bridging.

52 Reggie Cole

Rim uses a different wireless protocol and will require the use of bridges
(commonly called gateways in the telecommunications community) to allow
integration of the different networks.

2.3.5 Data architecture

Most SoS solutions have two needs in terms of data architecture. First, it is
necessary to ensure data consistency and semantics. Next, it is necessary to
support the need for persistent storage of shared data—that is, information
that is needed by more than one system in the SoS, even though it is owned
by a single system within the SoS.

While a single data store for the entire SoS might seem like a good
approach—least complex, lowest risk in terms of data integrity, and most
economical to create and manage—it has two significant disadvantages,
which limits its practical utility for SoS. First, a central data store would not
preserve the autonomy of existing systems. Second, meeting the required
levels of performance and availability is often difficult in an SoS environ-
ment. Three other data-storage strategies have emerged for SoS, models that
do preserve system autonomy and make it easier to deal with performance
and availability requirements.

The first strategy, which at first glance may not seem like much of a strategy
at all, is the uncoordinated data model (shown in Figure 2.8). The uncoordinated
data model is in fact not a bad approach. Although it requires that shared data
be exchanged via traditional system-to-system interfaces and requires that

Existing
System

Existing
System

Existing
System

Existing Systems
(And �eir External Systems)

New Interfaces

Not-So-Minor
Modifications to
Existing Systems

System Extensions

Figure 2.7 SoS refactoring.

Chapter two: SoS architecture 53

each system deal with data-structure and semantic problems in its own way,
it is a simple and economical strategy. Its key disadvantages are the risk of
problems with data structure and semantics and potentially high volumes of
duplicate data being exchanged over the interfaces. Nonetheless, it is a practi-
cal strategy for SoS problems in which there is anticipated to be a low volume
of shared data with a low risk of data structure and semantic problems.

The second strategy—the coordinated data model—mitigates one key aspect
of the uncoordinated data model, the semantic problem. The coordinated
data model (shown in Figure 2.9) involves a coordinated agreement on data
format and semantics. This is the pattern used for most SoS problems in
which there is anticipated to be a low volume of shared data. It has the sim-
plicity of the uncoordinated data model but adds documented agreements
on data structure and semantics. It is not uncommon to start with the unco-
ordinated data model and move to the coordinated data model as data struc-
ture and semantic problems emerge.

The third strategy—the federated data model—is the most sophisticated
approach for SoS and is best applied when the volume of shared data is high
and there is a high risk of data structure and semantic problems. The feder-
ated data model (shown in Figure 2.10) is the only strategy of the three that
has a separate SoS data store outside of the existing systems. The SoS data

System

Data

System

Data

System

Data

Figure 2.8 Uncoordinated data model.

A coordinated agreement with
respect to the naming, structure
and semantics of common data

System

Data

System

Data

System

Data

Figure 2.9 Coordinated data model.

54 Reggie Cole

repository contains shared data used by systems within the SoS. The shared
data are typically owned by one system in the SoS and posted to the SoS data
repository in an agreed-to format. It is not uncommon for the system owning
the shared data to have its own internal format and post the agreed-to format
in the SoS data store. (As a cautionary note, while it is tempting to post ALL
SoS data in the enterprise data repository, it places an unnecessary burden
on the SoS data repository and can often lead to an overly expensive and
often unmanageable solution.)

2.3.6 System protection

Protecting systems within the SoS is an important consideration. Allowing
systems to interact with each other, while continuing to prevent unauthor-
ized access to system data and other resources, is no small task. Securing
systems involves meeting four key security objectives [13]:

Confidentiality—preventing unauthorized access•	
Authentication—providing a means for identifying authorized users•	
Integrity—restricting the unauthorized modification of resources•	
Nonrepudiation—guaranteeing the identities of resource consumers •	
and providers

But security is only one aspect of protection. Another aspect of protection is
unintentional disruption by other systems within the SoS. Take the case where
one system in the SoS provides a key function within the SoS, a function accessed
by other systems within the SoS. It is possible for systems using the function to
overload the system that provides the function. It is also possible for a fault in
one system in the SoS to ripple throughout other systems within the SoS.

SoS Data Repository

SoS Shared
Data

Data
Acceptor

Data
Provider

System

Data

System

Data

System

Data

Figure 2.10 Federated data model.

Chapter two: SoS architecture 55

System isolation is a common technique employed for protection against
unintentional disruption. Isolation involves introducing a separation layer
between the internal subsystems of a system and external systems with
which it interacts.

2.4 Critical success factors in architecting SoS solutions
Several factors are critical in successfully architecting SoS solutions. These
factors can mean the difference between a successful solution and an unsuc-
cessful one. The factors discussed here apply to traditional as well as SoS
architecture, but are especially important for SoS. While by no means a com-
prehensive list, these factors serve as a list of things that should not be over-
looked. They include:

Robust design•	
Architecture alignment•	
Architecture governance•	
Architecture description•	

2.4.1 Robust design

A robust system is one in which the system serves its intended purpose under
the full range of environmental conditions [14]. There are three important aspects
of architecture robustness for SoS, and these are related directly to the fact that
systems within the SoS are diverse and need to maintain their autonomy.

The first aspect of robustness—business case robustness—is related to the
fact that needs change over time. As needs for individual systems change,
their role in the SoS can be affected. It is important, therefore, that the proper
functioning of the SoS not be too sensitive to changes in the business case for
each system within the SoS. For example, take the ITWN example, in which
the SATCOM system is integral to the architecture. As the SATCOM system
nears its end of life, it is not unthinkable that the SATCOM system would
be abandoned and replaced by leased transport services. A robust design
would be insensitive to changes in the transport mechanism.

The second aspect of robustness—schedule robustness—is related to the
ability of a system within the SoS to provide a necessary capability on time.
It is not uncommon for system improvements to be delayed for technical
or financial challenges. If the planned improvement of one of the systems
within the SoS is a critical capability for the SoS, the design is not very robust.
A more robust design from a schedule-robustness perspective would be to
have a contingency approach that meets the critical need of the SoS.

The third aspect of robustness—technological robustness—is related to the
technological environment. Take the case where the SoS solution is based on a
standardization of communications protocol within the SoS. In this example, an
analysis of alternatives might have indicated that a particular communications

56 Reggie Cole

protocol was best. However, over time a better protocol emerged, and systems
within the SoS started migrating to the new protocol. A robust design would
assume that there would exist within the SoS a variety of different protocols that
systems within the SoS would need to accommodate.

2.4.2 Architecture alignment

While it is a necessity that systems within the SoS maintain their autonomy,
it is nearly impossible to create or improve an SoS solution without some
disruption. The SoS architect must assume that some disruption will occur
and plan for realignment to reestablish architectural resonance. There are
three important aspects of architecture alignment that need to be consid-
ered. The first aspect—organizational alignment—involves realigning orga-
nizations to function within the SoS context. The second aspect—business
process alignment—involves updating business processes and procedures
to function within the SoS context. The third aspect—technological align-
ment—involves aligning technological aspects.

Consider the ITWN example in which all three are required. Each of these
systems has organizations for doing service provisioning and network man-
agement, but none were designed to interoperate with other organizations.
Each of those organizations will have to make internal changes to accommo-
date the SoS architecture. Moreover, since each system has business processes
and procedures for provisioning a service—and none of those processes or
procedures accounts for interaction with other organizations—processes and
procedures will need to be realigned to function effectively within an SoS
context. Finally, each system might have a fundamentally different meaning
for the term communication service—not just a semantic difference but also
a substantial difference in terms of technical implementation. These techni-
cal differences will need to be addressed.

2.4.3 Architecture governance

While it is important for systems within an SoS to maintain their autonomy,
it is not practical to allow uncoordinated changes to occur. When a system
becomes part of an SoS, it becomes part of a larger federation of systems, and
that federation must have rules all members of the federation agree to honor.
Those rules form the basis of architecture governance. Without governance,
maintaining the proper functioning of an SoS is nearly impossible.

There are two aspects of architecture governance relevant to SoS. The first
aspect—governance of roles and responsibilities—is related to dealing with
the fuzzy-partition problem. As individual system needs change over time,
their role within the SoS might need to be revisited. Having mechanisms in
place for managing roles and responsibilities allows for change to occur, but
not in an uncoordinated way.

Chapter two: SoS architecture 57

The second aspect of architecture governance—interface governance—is
related to the details of system-to-system interfaces. In the case of SoS, these
can also become fuzzy. Consider the example in which one system in the SoS
is posting shared data. Any system within the SoS can retrieve the shared
data. When a decision is made to change the structure or semantics of the
shared data (in even the smallest way), it is important that the change is coor-
dinated with all users of the data. Those affected include not only those cur-
rently using the data but also those that are in the process of making changes
to their internal systems to use the data in the future.

2.4.4 Architecture description

As systems become more and more complex, it becomes increasingly impor-
tant to represent the architecture using a well-defined model. The architec-
ture model provides a means for performing analysis of the system structure
and behavior and also provides a roadmap for those implementing the archi-
tecture. Moreover, as the number of people involved with the analysis, syn-
thesis, evaluation, implementation, and operation of the system increases,
describing the architecture using a well-defined set of models and semantics
becomes very important.

Architecture descriptions are necessarily done from multiple view-
points—no single viewpoint of the architecture adequately captures even the
most salient aspects of the architecture of a system. (Architecture description
of complex systems has become very similar to the multiview drawings used
in building architecture.) The multi-view architecture approach is acknowl-
edged to have started with the Zachman framework [15] in the late 1980s. This
multiview approach has since been formalized by the Institute of Electrical
and Electronics Engineers [1]. Although the Zachman framework was the
first real architecture framework, it has spawned several other frameworks.

There are clearly benefits to using an architecture framework. Architec-
ture frameworks provide a roadmap for describing the architecture of a sys-
tem. They serve as something of a checklist for all the concerns that may
need to be addressed during architecture design. They also provide a rich
set of semantics for representing the architecture, as well as providing meta-
data for the architecture description itself.

But there are also some dangers. Architecture frameworks are designed
to be comprehensive. As a result, they specify a comprehensive set of views.
In reality, few architecture descriptions need to capture everything speci-
fied in a framework—tailoring is almost always necessary. Failing to ade-
quately tailor the framework can result in overspecification and too much
time being spent describing the architecture, with too little time spent on
the most important aspects of the design. Another danger of architecture
frameworks is that they can lead to a false sense of adequacy; the result is a
well-described but poorly designed solution.

58 Reggie Cole

2.5 Architecture frameworks
We end this chapter with a discussion of some specific architecture frame-
works. Each of these frameworks was designed to meet a specific need. While
some of these are more suited to SoS architecture than others, all of them can
be used. The frameworks are listed below:

The Zachman Framework•	
The Department of Defense Architecture Framework (DoDAF)•	
The Ministry of Defence Architecture Framework (MoDAF)•	
The Federal Enterprise Architecture (FEA) Framework•	
The Rational Unified Process (RUP)•	
The Open Group Architecture Framework (TOGAF)•	

The structures of the three most significant frameworks—Zachman,
DoDAF and MoDAF—are discussed in more detail.

The Zachman Framework, introduced in 1987 [16] was the first real archi-
tecture framework that is applicable to SoS architecture. Aside from its con-
tinued use today, the Zachman Framework (shown in Table 2.2) served as the
foundation for every other architecture framework discussed in this chapter.

The Office of the Secretary of Defense (OSD) maintains DoDAF, which is
used across the United States Department of Defense for describing architec-
tures. Its structure (shown in Table 2.3) [17] is very good for describing SoS
architectures. It has three core views—operational view, system view and
technical standards view—and several view products within each view.

The United Kingdom (U.K.) Ministry of Defence modeled MoDAF after
the DoDAF model. Notice that its structure (shown in Table 2.4) [18] is very
similar to DoDAF. In addition to the core views contained in DoDAF, MoDAF
adds two additional core views: the strategic view and the acquisition view.
MoDAF is another excellent framework for representing SoS architectures.

The Federal Enterprise Architecture (FEA) Framework, maintained by
the United States Office of Management and Budget, is used to represent
enterprise architectures in the various nondefense agencies within the
United States government [19]. While the FEA framework can be used to
represent SoS architectures, it is most useful for representing enterprise
architectures.

While DoDAF, MoDAF, and FEA were all created for government use in
the United States and the United Kingdom, they are all freely available and
well-documented frameworks and should be considered for use in repre-
senting SoS architectures in all types of enterprises, private enterprises as
well as government enterprises.

The Rational Unified Process (RUP), maintained and licensed by IBM, is
widely used to represent enterprise software architectures [20]. While RUP
does specify some specific architecture views, it is more of a software devel-
opment process framework than an architecture framework.

Chapter two: SoS architecture 59

Ta
b

le
 2

.2

T
he

 Z
ac

hm
an

 F
ra

m
ew

or
k

A
d

d
re

ss
es

 ⇒
W

h
at

H
ow

W
h

er
e

W
h

o
W

h
en

W
hy

D
es

cr
ib

es
 ⇒

D
at

a
Fu

n
ct

io
n

N
et

w
or

k
Pe

op
le

Ti
m

e
M

ot
iv

at
io

n

L
ay

er
 1

Sc
op

e
B

us
in

es
s

en
ti

ti
es

B
us

in
es

s
fu

nc
ti

on
s

B
us

in
es

s
lo

ca
ti

on
s

O
rg

an
iz

at
io

ns

&
 e

nt
er

pr
is

es
B

us
in

es
s

ev
en

ts
B

us
in

es
s

go
al

s

L
ay

er
 2

B
us

in
es

s
m

od
el

Se
m

an
ti

c
m

od
el

B
us

in
es

s
pr

oc
es

s
m

od
el

B
us

in
es

s
lo

gi
st

ic
s

O
rg

an
iz

at
io

n
ch

ar
t

M
as

te
r

sc
he

d
ul

e
B

us
in

es
s

pl
an

L
ay

er
 3

Sy
st

em
 m

od
el

L
og

ic
al

 d
at

a
m

od
el

s
A

pp
lic

at
io

n
ar

ch
it

ec
tu

re
D

is
tr

ib
ut

io
n

ar
ch

it
ec

tu
re

H
um

an

in
te

rf
ac

e
ar

ch
it

ec
tu

re

Pr
oc

es
si

ng

st
ru

ct
ur

e
B

us
in

es
s

ru
le

s

L
ay

er
 4

Te
ch

ni
ca

l
m

od
el

Ph
ys

ic
al

 d
at

a
m

od
el

s
Sy

st
em

 d
es

ig
n

Te
ch

no
lo

gy

ar
ch

it
ec

tu
re

Pr
es

en
ta

ti
on

ar

ch
it

ec
tu

re
C

on
tr

ol

st
ru

ct
ur

e
R

ul
e

d
es

ig
n

L
ay

er
 5

D
et

ai
le

d

re
pr

es
en

ta
ti

on
D

at
ab

as
e

sc
he

m
at

a
So

ur
ce

 c
od

e
N

et
w

or
k

ar
ch

it
ec

tu
re

Se
cu

ri
ty

ar

ch
it

ec
tu

re
Ti

m
in

g
d

efi
ni

ti
on

R
ul

e
sp

ec
ifi

ca
ti

on

60 Reggie Cole
Ta

b
le

 2
.3

T

he
 D

oD
 A

rc
hi

te
ct

ur
e

Fr
am

ew
or

k

V
ie

w
V

ie
w

 D
es

cr
ip

ti
on

V
ie

w

P
ro

d
u

ct
V

ie
w

 P
ro

d
u

ct
 N

am
e

V
ie

w
 P

ro
d

u
ct

 D
es

cr
ip

ti
on

A
ll

vi
ew

s
A

sp
ec

ts
 th

at
 c

ro
ss

cu
t o

pe
ra

tio
na

l,
sy

st
em

s
an

d
te

ch
ni

ca
l s

ta
nd

ar
ds

 v
ie

w
s

A
V

-1
O

ve
rv

ie
w

 &
 s

um
m

ar
y

in
fo

rm
at

io
n

G
en

er
al

 s
co

pe
, p

ur
po

se
 a

nd
 in

te
nd

ed

us
er

s

A
V

-2
In

te
gr

at
ed

 d
ic

ti
on

ar
y

D
at

a
d

ic
ti

on
ar

y
th

at
 c

on
ta

in
s

te
rm

s
an

d
 d

efi
ni

ti
on

s
us

ed
 in

 a
ll

vi
ew

pr

od
uc

ts

O
pe

ra
ti

on
al

vi

ew
D

es
cr

ib
es

 o
pe

ra
ti

on
al

 n
od

es
,

op
er

at
io

na
l a

ct
iv

it
ie

s
an

d

op
er

at
io

na
l i

nf
or

m
at

io
n

O
V

-1
H

ig
h-

le
ve

l o
pe

ra
ti

on
al

co

nc
ep

t g
ra

ph
ic

H
ig

h-
le

ve
l d

es
cr

ip
ti

on
 o

f t
he

op

er
at

io
na

l c
on

ce
pt

O
V

-2
O

pe
ra

ti
on

al
 n

od
e

co
nn

ec
ti

vi
ty

 d
es

cr
ip

ti
on

O
pe

ra
ti

on
al

 n
od

es
, c

on
ne

ct
iv

it
y

an
d

in

fo
rm

at
io

n
ne

ed
s

be
tw

ee
n

no
d

es

O
V

-3
O

pe
ra

ti
on

al
 in

fo
rm

at
io

n
ex

ch
an

ge
 m

at
ri

x
Id

en
ti

fie
s

th
e

in
fo

rm
at

io
n

ex
ch

an
ge

d

be
tw

ee
n

no
d

es
 a

lo
ng

 w
it

h
re

le
va

nt

at
tr

ib
ut

es
 o

f t
he

 e
xc

ha
ng

e

O
V

-4
O

rg
an

iz
at

io
na

l
re

la
ti

on
sh

ip
s

ch
ar

t
O

rg
an

iz
at

io
na

l,
ro

le
 o

r
ot

he
r

re
la

ti
on

sh
ip

s
am

on
g

or
ga

ni
za

ti
on

s

O
V

-5
O

pe
ra

ti
on

al
 a

ct
iv

it
y

m
od

el
C

ap
ab

ili
ti

es
 a

nd
 o

pe
ra

ti
on

al
 a

ct
iv

it
ie

s
al

on
g

w
it

h
ac

ti
vi

ty
 in

te
rr

el
at

io
ns

hi
ps

O
V

-6
a

O
pe

ra
ti

on
al

 r
ul

es
 m

od
el

D
es

cr
ib

es
 b

us
in

es
s

ru
le

s
th

at
 c

on
st

ra
in

op

er
at

io
n

O
V

-6
b

O
pe

ra
ti

on
al

 s
ta

te

tr
an

si
ti

on
 d

es
cr

ip
ti

on
Id

en
ti

fie
s

bu
si

ne
ss

 p
ro

ce
ss

 r
es

po
ns

e
to

ev

en
ts

 o
r

co
nd

it
io

ns

O
V

-6
c

O
pe

ra
ti

on
al

 e
ve

nt
-t

ra
ce

d

es
cr

ip
ti

on
Tr

ac
es

 a
ct

io
ns

 in
 a

 s
ce

na
ri

o
or

 s
eq

ue
nc

e
of

 e
ve

nt
s

O
V

-7
L

og
ic

al
 d

at
a

m
od

el
D

es
cr

ib
es

 th
e

sy
st

em
 d

at
a

Chapter two: SoS architecture 61

Sy
st

em
s

vi
ew

D
es

cr
ib

es
 s

ys
te

m
, s

er
vi

ce
 a

nd

in
te

rc
on

ne
ct

io
n

fu
nc

ti
on

al
it

y
an

d

re
la

ti
on

sh
ip

s

SV
-1

Sy
st

em
/

se
rv

ic
e

in
te

rf
ac

e
d

es
cr

ip
ti

on
Id

en
ti

fie
s

sy
st

em
 n

od
es

 (o
r

se
rv

ic
es

)
an

d
 in

te
rc

on
ne

ct
io

ns

SV
-2

Sy
st

em
/

se
rv

ic
e

co
m

m
un

ic
at

io
ns

d

es
cr

ip
ti

on

D
efi

ne
s

th
e

co
m

m
un

ic
at

io
ns

in

fr
as

tr
uc

tu
re

 fo
r

su
pp

or
ti

ng
 s

ys
te

m
/

se
rv

ic
e

in
te

rc
on

ne
ct

io
ns

SV
-3

Sy
st

em
-s

ys
te

m
 m

at
ri

x
Sy

st
em

-s
er

vi
ce

 m
at

ri
x

Se
rv

ic
e-

se
rv

ic
e

m
at

ri
x

R
el

at
io

ns
hi

ps
 a

m
on

g
sy

st
em

s
an

d

se
rv

ic
es

 in
 th

e
ar

ch
it

ec
tu

re

SV
-4

a
Sy

st
em

s
fu

nc
ti

on
al

it
y

d
es

cr
ip

ti
on

D
es

cr
ib

es
 fu

nc
ti

on
s

pe
rf

or
m

ed
 b

y
th

e
sy

st
em

 a
nd

 d
efi

ne
s

d
at

a
fl

ow
s

am
on

g
fu

nc
ti

on
s

SV
4b

Se
rv

ic
es

 fu
nc

ti
on

al
it

y
d

es
cr

ip
ti

on
D

es
cr

ib
es

 fu
nc

ti
on

s
pe

rf
or

m
ed

 b
y

th
e

se
rv

ic
es

 a
nd

 d
efi

ne
s

d
at

a
fl

ow
s

am
on

g
fu

nc
ti

on
s

SV
-5

a
O

pe
ra

ti
on

al
 a

ct
iv

it
y

to

sy
st

em
s

fu
nc

ti
on

tr

ac
ea

bi
lit

y
m

at
ri

x

M
ap

pi
ng

 o
f s

ys
te

m
s

fu
nc

ti
on

s
in

 th
e

sy
st

em
 v

ie
w

 to
 o

pe
ra

ti
on

al
 a

ct
iv

it
ie

s
in

 th
e

op
er

at
io

na
l v

ie
w

SV
-5

b
O

pe
ra

ti
on

al
 a

ct
iv

it
y

to

sy
st

em
s

tr
ac

ea
bi

lit
y

m
at

ri
x

M
ap

pi
ng

 o
f s

ys
te

m
s

in
 th

e
sy

st
em

 v
ie

w

ba
ck

 to
 o

pe
ra

ti
on

al
 a

ct
iv

it
ie

s
in

 th
e

op
er

at
io

na
l v

ie
w

SV
-5

c
O

pe
ra

ti
on

al
 a

ct
iv

it
y

to

se
rv

ic
es

 tr
ac

ea
bi

lit
y

m
at

ri
x

M
ap

pi
ng

 o
f s

er
vi

ce
s

in
 th

e
sy

st
em

 v
ie

w

ba
ck

 to
 o

pe
ra

ti
on

al
 a

ct
iv

it
ie

s
in

 th
e

op
er

at
io

na
l v

ie
w

SV
-6

Sy
st

em
s/

se
rv

ic
es

 d
at

a
ex

ch
an

ge
 m

at
ri

x
D

es
cr

ib
es

 d
et

ai
ls

 o
f d

at
a

be
in

g
ex

ch
an

ge
d

be

tw
ee

n
sy

st
em

/s
er

vi
ce

s
al

on
g

w
ith

 th
e

at
tr

ib
ut

es
 o

f t
he

 e
xc

ha
ng

e
(c

on
ti

nu
ed

)

62 Reggie Cole
Ta

b
le

 2
.3

T

he
 D

oD
 A

rc
hi

te
ct

ur
e

Fr
am

ew
or

k
(c

on
ti

nu
ed

)

V
ie

w
V

ie
w

 D
es

cr
ip

ti
on

V
ie

w

P
ro

d
u

ct
V

ie
w

 P
ro

d
u

ct
 N

am
e

V
ie

w
 P

ro
d

u
ct

 D
es

cr
ip

ti
on

SV
-7

Sy
st

em
s/

se
rv

ic
es

pe

rf
or

m
an

ce
 p

ar
am

et
er

s
m

at
ri

x

D
es

cr
ib

es
 th

e
pe

rf
or

m
an

ce

ch
ar

ac
te

ri
st

ic
s

of
 s

ys
te

m
s/

se
rv

ic
es

SV
-8

Sy
st

em
s/

se
rv

ic
es

ev

ol
ut

io
n

d
es

cr
ip

ti
on

Pl
an

ne
d

 e
vo

lu
ti

on
 o

f s
ys

te
m

s/
se

rv
ic

es

SV
-9

Sy
st

em
s/

se
rv

ic
es

te

ch
no

lo
gy

 fo
re

ca
st

Em
er

gi
ng

 te
ch

no
lo

gi
es

 th
at

 a
re

 e
xp

ec
te

d

to
 a

ff
ec

t t
he

 a
rc

hi
te

ct
ur

e
al

on
g

w
ith

th

ei
r

an
tic

ip
at

ed
 ti

m
ef

ra
m

es

SV
-1

0a
Sy

st
em

s
ru

le
s

m
od

el
D

es
cr

ib
es

 th
e

co
ns

tr
ai

nt
s

pl
ac

ed
 o

n
sy

st
em

s/
se

rv
ic

es

SV
-1

0b
Sy

st
em

s
st

at
e

tr
an

si
ti

on

d
es

cr
ip

ti
on

Id
en

ti
fie

s
sy

st
em

s/
se

rv
ic

es
 r

es
po

ns
e

to

ev
en

ts
 o

r
co

nd
it

io
ns

SV
-1

0c
Sy

st
em

s
ev

en
t-

tr
ac

e
d

es
cr

ip
ti

on
Tr

ac
es

 a
ct

io
ns

 in
 a

 s
ce

na
ri

o
or

 s
eq

ue
nc

e
of

 e
ve

nt
s

SV
-1

1
Ph

ys
ic

al
 [d

at
a]

 s
ch

em
a

Ph
ys

ic
al

 im
pl

em
en

ta
ti

on
 o

f t
he

 lo
gi

ca
l

d
at

a
m

od
el

—
m

es
sa

ge
 fo

rm
at

s,
 fi

le

st
ru

ct
ur

es
, p

hy
si

ca
l s

ch
em

a,
 e

tc
.

Te
ch

ni
ca

l
st

an
d

ar
d

s
vi

ew

Id
en

ti
fie

s
th

e
po

lic
ie

s
an

d
 s

ta
nd

ar
d

s
th

at
 g

ov
er

n
th

e
sy

st
em

 a
rc

hi
te

ct
ur

e
T

V
-1

Te
ch

ni
ca

l s
ta

nd
ar

d
s

pr
ofi

le
L

is
ti

ng
 o

f a
pp

lic
ab

le
 s

ta
nd

ar
d

s
or

po

lic
ie

s
th

at
 c

on
st

ra
in

 th
e

ar
ch

it
ec

tu
re

T
V

-2
Te

ch
ni

ca
l s

ta
nd

ar
d

s
fo

re
ca

st
D

es
cr

ip
ti

on
 o

f e
m

er
gi

ng
 s

ta
nd

ar
d

s
(o

r
ch

an
ge

s
to

 e
xi

st
in

g
st

an
d

ar
d

s)
 th

at
 a

re

ex
pe

ct
ed

 to
 im

pa
ct

 th
e

ar
ch

it
ec

tu
re

al

on
g

w
it

h
th

ei
r

ti
m

ef
ra

m
es

Chapter two: SoS architecture 63

Ta
b

le
 2

.4

M
in

is
tr

y
of

 D
ef

en
ce

 A
rc

hi
te

ct
ur

e
Fr

am
ew

or
k

V
ie

w
V

ie
w

 D
es

cr
ip

ti
on

V
ie

w

P
ro

d
u

ct
V

ie
w

 P
ro

d
u

ct
 N

am
e

V
ie

w
 P

ro
d

u
ct

 D
es

cr
ip

ti
on

A
ll

vi
ew

s
A

ll
V

ie
w

 p
ro

d
uc

ts
 p

ro
vi

d
e

in
fo

rm
at

io
n

pe
rt

in
en

t t
o

th
e

en
ti

re

A
rc

hi
te

ct
ur

e

A
V

-1
O

ve
rv

ie
w

 &
 s

um
m

ar
y

in
fo

rm
at

io
n

In
cl

ud
es

 a
ss

um
pt

io
ns

, c
on

st
ra

in
ts

, a
nd

lim

it
at

io
ns

 th
at

 m
ay

 a
ff

ec
t h

ig
h-

le
ve

l
d

ec
is

io
ns

 r
el

at
in

g
to

 a
n

ar
ch

it
ec

tu
re

A
V

-2
In

te
gr

at
ed

 d
ic

ti
on

ar
y

Pr
es

en
ts

 a
ll

th
e

el
em

en
ts

 u
se

d
 in

 a
n

ar
ch

it
ec

tu
re

 a
s

a
st

an
d

 a
lo

ne
 s

tr
uc

tu
re

St
ra

te
gi

c
vi

ew
s

T
he

 S
tr

at
eg

ic
 V

ie
w

s
su

pp
or

t t
he

ca

pa
bi

lit
y

m
an

ag
em

en
t p

ro
ce

ss
St

V
-1

E
nt

er
pr

is
e

vi
si

on
A

d
d

re
ss

es
 th

e
en

te
rp

ri
se

 c
on

ce
rn

s
as

so
ci

at
ed

 w
it

h
th

e
ov

er
al

l v
is

io
n

an
d

d

efi
ne

s
th

e
st

ra
te

gi
c

co
nt

ex
t f

or
 a

gr

ou
p

of
 e

nt
er

pr
is

e
ca

pa
bi

lit
ie

s

St
V

-2
C

ap
ab

ili
ty

 ta
xo

no
m

y
D

es
cr

ib
es

 th
e

ta
xo

no
m

y
of

 c
ap

ab
ili

ti
es

St
V

-3
C

ap
ab

ili
ty

 p
ha

si
ng

D
es

cr
ib

es
 th

e
pl

an
ne

d
 e

vo
lu

ti
on

 o
f

ca
pa

bi
lit

ie
s

ov
er

 ti
m

e

St
V

-4
C

ap
ab

ili
ty

 d
ep

en
d

en
ci

es
D

es
cr

ib
es

 d
ep

en
d

en
ci

es
 b

et
w

ee
n

pl
an

ne
d

 c
ap

ab
ili

ti
es

St
V

-5
C

ap
ab

ili
ty

 to

or
ga

ni
za

ti
on

al

d
ep

lo
ym

en
t m

ap
pi

ng

D
es

cr
ib

es
 th

e
pl

an
ne

d
 d

ep
lo

ym
en

t o
f

ca
pa

bi
lit

ie
s

in
 a

n
or

ga
ni

za
ti

on
al

co

nt
ex

t

St
V

-6
O

pe
ra

ti
on

al
 a

ct
iv

it
y

to

ca
pa

bi
lit

y
m

ap
pi

ng
Pr

ov
id

es
 a

 m
ap

pi
ng

 b
et

w
ee

n
th

e
ca

pa
bi

lit
ie

s
in

 th
e

st
ra

te
gi

c
vi

ew
 to

op

er
at

io
na

l a
ct

iv
it

ie
s

in
 th

e
op

er
at

io
na

l v
ie

w
(c

on
ti

nu
ed

)

64 Reggie Cole
Ta

b
le

 2
.4

M

in
is

tr
y

of
 D

ef
en

ce
 A

rc
hi

te
ct

ur
e

Fr
am

ew
or

k
(c

on
ti

nu
ed

)

V
ie

w
V

ie
w

 D
es

cr
ip

ti
on

V
ie

w

P
ro

d
u

ct
V

ie
w

 P
ro

d
u

ct
 N

am
e

V
ie

w
 P

ro
d

u
ct

 D
es

cr
ip

ti
on

O
pe

ra
ti

on
al

vi

ew
D

es
cr

ib
es

 o
pe

ra
ti

on
al

 n
od

es
,

op
er

at
io

na
l a

ct
iv

it
ie

s
an

d

op
er

at
io

na
l i

nf
or

m
at

io
n

O
V

-1
a

H
ig

h-
le

ve
l o

pe
ra

ti
on

al

co
nc

ep
t g

ra
ph

ic
G

ra
ph

ic
 r

ep
re

se
nt

at
io

n
of

 th
e

hi
gh

-
le

ve
l o

pe
ra

ti
on

al
 c

on
ce

pt

O
V

-1
b

O
pe

ra
ti

on
al

 c
on

ce
pt

d

es
cr

ip
ti

on
Pr

ov
id

es
 a

 s
up

pl
em

en
ta

ry
 te

xt
ur

al

d
es

cr
ip

ti
on

 th
at

 e
xp

la
in

s
an

d
 d

et
ai

ls

th
e

sc
en

ar
io

 c
on

ta
in

ed
 w

it
hi

n
th

e
as

so
ci

at
ed

 h
ig

h
le

ve
l o

pe
ra

ti
on

al

co
nc

ep
t g

ra
ph

ic

O
V

-1
c

O
pe

ra
ti

on
al

 p
er

fo
rm

an
ce

at

tr
ib

ut
es

Pr
ov

id
es

 d
et

ai
l o

f t
he

 o
pe

ra
tio

na
l

pe
rf

or
m

an
ce

 a
tt

ri
bu

te
s

as
so

ci
at

ed
 w

ith

th
e

sc
en

ar
io

 r
ep

re
se

nt
ed

 in
 th

e
hi

gh

le
ve

l o
pe

ra
tio

na
l c

on
ce

pt
 g

ra
ph

ic

O
V

-2
O

pe
ra

ti
on

al
 n

od
e

re
la

ti
on

sh
ip

s
d

es
cr

ip
ti

on

O
pe

ra
ti

on
al

 n
od

es
, c

on
ne

ct
iv

it
y

an
d

in

fo
rm

at
io

n
ne

ed
s

be
tw

ee
n

no
d

es

O
V

-3
O

pe
ra

ti
on

al
 in

fo
rm

at
io

n
ex

ch
an

ge
 m

at
ri

x
Id

en
ti

fie
s

th
e

in
fo

rm
at

io
n

ex
ch

an
ge

d

be
tw

ee
n

no
d

es
 a

lo
ng

 w
it

h
re

le
va

nt

at
tr

ib
ut

es
 o

f t
he

 e
xc

ha
ng

e

O
V

-4
O

rg
an

iz
at

io
na

l
re

la
ti

on
sh

ip
s

ch
ar

t
O

rg
an

iz
at

io
na

l,
ro

le
 o

r
ot

he
r

re
la

ti
on

sh
ip

s
am

on
g

or
ga

ni
za

ti
on

s

O
V

-5
O

pe
ra

ti
on

al
 a

ct
iv

it
y

m
od

el
C

ap
ab

ili
ti

es
 a

nd
 o

pe
ra

ti
on

al
 a

ct
iv

it
ie

s
al

on
g

w
it

h
ac

ti
vi

ty
 in

te
rr

el
at

io
ns

hi
ps

O
V

-6
a

O
pe

ra
ti

on
al

 r
ul

es
 m

od
el

D
es

cr
ib

es
 b

us
in

es
s

ru
le

s
th

at
 c

on
st

ra
in

op

er
at

io
n

Chapter two: SoS architecture 65

O
V

-6
b

O
pe

ra
ti

on
al

 s
ta

te

tr
an

si
ti

on
 d

es
cr

ip
ti

on
Id

en
ti

fie
s

bu
si

ne
ss

 p
ro

ce
ss

 r
es

po
ns

e
to

ev

en
ts

 o
r

co
nd

it
io

ns

O
V

-6
c

O
pe

ra
ti

on
al

 e
ve

nt
-t

ra
ce

d

es
cr

ip
ti

on
Tr

ac
es

 a
ct

io
ns

 in
 a

 s
ce

na
ri

o
or

 s
eq

ue
nc

e
of

 e
ve

nt
s

O
V

-7
In

fo
rm

at
io

n
m

od
el

A
d

d
re

ss
 th

e
in

fo
rm

at
io

n
pe

rs
pe

ct
iv

e
of

an

 o
pe

ra
ti

on
al

 a
rc

hi
te

ct
ur

e

Sy
st

em
s

vi
ew

D
es

cr
ib

es
 s

ys
te

m
, s

er
vi

ce
 a

nd

in
te

rc
on

ne
ct

io
n

fu
nc

ti
on

al
it

y
an

d

re
la

ti
on

sh
ip

s

SV
-1

R
es

ou
rc

e
in

te
ra

ct
io

n
sp

ec
ifi

ca
ti

on
A

d
d

re
ss

 th
e

co
m

po
si

ti
on

 a
nd

 in
te

ra
ct

io
n

of
 r

es
ou

rc
es

SV
-2

a
Sy

st
em

 p
or

t s
pe

ci
fic

at
io

n
Sp

ec
ifi

es
 th

e
po

rt
s

on
 a

 s
ys

te
m

, a
nd

 th
e

pr
ot

oc
ol

s
us

ed
 b

y
th

os
e

po
rt

s
w

he
n

co
m

m
un

ic
at

in
g

w
it

h
ot

he
r

sy
st

em
s

SV
-2

b
Sy

st
em

 p
or

t c
on

ne
ct

iv
it

y
d

es
cr

ip
ti

on
Sp

ec
ifi

es
 th

e
co

m
m

un
ic

at
io

ns
 li

nk
s

be
tw

ee
n

sy
st

em
s

an
d

 m
ay

 a
ls

o
lis

t t
he

pr

ot
oc

ol
 s

ta
ck

s
us

ed
 in

 c
on

ne
ct

io
ns

SV
-2

c
Sy

st
em

 c
on

ne
ct

iv
it

y
cl

us
te

rs
D

efi
ne

s
ho

w
 in

d
iv

id
ua

l c
on

ne
ct

io
ns

be

tw
ee

n
sy

st
em

s
ar

e
gr

ou
pe

d
 in

to

lo
gi

ca
l c

on
ne

ct
io

ns
 b

et
w

ee
n

pa
re

nt

re
so

ur
ce

s

SV
-3

R
es

ou
rc

e
in

te
ra

ct
io

n
m

at
ri

x
Pr

ov
id

es
 a

 ta
bu

la
r

su
m

m
ar

y
of

 th
e

re
so

ur
ce

 in
te

ra
ct

io
ns

 s
pe

ci
fi

ed
 in

 th
e

SV
-1

 fo
r

th
e

ar
ch

it
ec

tu
re

SV
-4

Fu
nc

ti
on

al
it

y
d

es
cr

ip
ti

on
A

d
d

re
ss

 h
um

an
 a

nd
 s

ys
te

m

fu
nc

ti
on

al
it

y

SV
-5

Fu
nc

ti
on

 to
 o

pe
ra

ti
on

al

ac
ti

vi
ty

 tr
ac

ea
bi

lit
y

m
at

ri
x

A
dd

re
ss

es
 th

e
lin

ka
ge

 b
et

w
ee

n
fu

nc
tio

ns

d
es

cr
ib

ed
 in

 S
V

-4
 a

nd
 o

pe
ra

ti
on

al

ac
ti

vi
ti

es
 s

pe
ci

fie
d

 in
 O

V
-5

(c
on

ti
nu

ed
)

66 Reggie Cole

Ta
b

le
 2

.4

M
in

is
tr

y
of

 D
ef

en
ce

 A
rc

hi
te

ct
ur

e
Fr

am
ew

or
k

(c
on

ti
nu

ed
)

V
ie

w
V

ie
w

 D
es

cr
ip

ti
on

V
ie

w

P
ro

d
u

ct
V

ie
w

 P
ro

d
u

ct
 N

am
e

V
ie

w
 P

ro
d

u
ct

 D
es

cr
ip

ti
on

SV
-6

Sy
st

em
s

d
at

a
ex

ch
an

ge

m
at

ri
x

Sp
ec

ifi
es

 th
e

ch
ar

ac
te

ri
st

ic
s

of
 th

e
sy

st
em

d

at
a

ex
ch

an
ge

d
 b

et
w

ee
n

sy
st

em
s

SV
-7

R
es

ou
rc

e
pe

rf
or

m
an

ce

pa
ra

m
et

er
s

m
at

ri
x

D
ep

ic
ts

 th
e

pe
rf

or
m

an
ce

 c
ha

ra
ct

er
is

ti
cs

of

 a
 r

es
ou

rc
e

(s
ys

te
m

, r
ol

e
or

 c
ap

ab
ili

ty

co
nfi

gu
ra

ti
on

)

SV
-8

C
ap

ab
ili

ty
 c

on
fig

ur
at

io
n

m
an

ag
em

en
t

Pr
es

en
ts

 a
 w

ho
le

 li
fe

cy
cl

e
vi

ew
 o

f a

re
so

ur
ce

, d
es

cr
ib

in
g

ho
w

 it
s

co
nfi

gu
ra

ti
on

 c
ha

ng
es

 o
ve

r
ti

m
e

SV
-9

Te
ch

no
lo

gy
 &

 s
ki

lls

fo
re

ca
st

Pr
ov

id
es

 a
 s

um
m

ar
y

of
 e

m
er

gi
ng

te

ch
no

lo
gi

es
 a

nd
 s

ki
lls

 th
at

 im
pa

ct
 th

e
re

so
ur

ce
s

th
at

 c
on

st
it

ut
e

th
e

ar
ch

it
ec

tu
re

SV
-1

0a
R

es
ou

rc
e

co
ns

tr
ai

nt
s

sp
ec

ifi
ca

ti
on

Sp
ec

ifi
es

 fu
nc

ti
on

al
 a

nd
 n

on
fu

nc
ti

on
al

co

ns
tr

ai
nt

s
on

 th
e

im
pl

em
en

ta
ti

on

as
pe

ct
s

of
 th

e
ar

ch
it

ec
tu

re
 (i

.e
. t

he

st
ru

ct
ur

al
 a

nd
 b

eh
av

io
ra

l e
le

m
en

ts
 o

f
th

e
SV

 v
ie

w
po

in
t)

.

Chapter two: SoS architecture 67

SV
-1

0b
R

es
ou

rc
e

st
at

e
tr

an
si

ti
on

d

es
cr

ip
ti

on
A

 g
ra

ph
ic

al
 d

ep
ic

ti
on

 o
f a

 r
es

ou
rc

e
(o

r
fu

nc
ti

on
) r

es
po

ns
e

to
 v

ar
io

us
 e

ve
nt

s
by

ch

an
gi

ng
 it

s
st

at
e

SV
-1

0c
R

es
ou

rc
e

ev
en

t-
tr

ac
e

d
es

cr
ip

ti
on

Pr
ov

id
es

 a
 ti

m
e-

or
d

er
ed

 e
xa

m
in

at
io

n
of

th

e
in

te
ra

ct
io

ns
 b

et
w

ee
n

fu
nc

ti
on

al

re
so

ur
ce

s

SV
-1

1
Ph

ys
ic

al
 [d

at
a]

 s
ch

em
a

D
efi

ne
s

th
e

st
ru

ct
ur

e
of

 th
e

va
ri

ou
s

ki
nd

s
of

 s
ys

te
m

 d
at

a
th

at
 a

re
 u

ti
liz

ed

by
 th

e
sy

st
em

s
in

 th
e

ar
ch

it
ec

tu
re

Te
ch

ni
ca

l
st

an
d

ar
d

s
vi

ew

Id
en

ti
ti

es
 th

e
po

lic
ie

s
an

d
 s

ta
nd

ar
d

s
th

at
 g

ov
er

n
th

e
sy

st
em

 a
rc

hi
te

ct
ur

e
T

V
-1

St
an

d
ar

d
s

pr
ofi

le
L

is
ti

ng
 o

f a
pp

lic
ab

le
 s

ta
nd

ar
d

s
or

po

lic
ie

s
th

at
 c

on
st

ra
in

 th
e

ar
ch

it
ec

tu
re

T
V

-2
St

an
d

ar
d

s
fo

re
ca

st
D

es
cr

ip
ti

on
 o

f e
m

er
gi

ng
 s

ta
nd

ar
d

s
(o

r
ch

an
ge

s
to

 e
xi

st
in

g
st

an
d

ar
d

s)
 th

at
 a

re

ex
pe

ct
ed

 to
 im

pa
ct

 th
e

ar
ch

it
ec

tu
re

al

on
g

w
it

h
th

ei
r

ti
m

ef
ra

m
es

A
cq

ui
si

ti
on

vi

ew
Pr

ov
id

es
 p

ro
gr

am
m

at
ic

 d
et

ai
ls

,
in

cl
ud

in
g

d
ep

en
d

en
ci

es
 b

et
w

ee
n

pr
oj

ec
ts

 a
nd

 c
ap

ab
ili

ty
 in

te
gr

at
io

n

A
cV

-1
A

cq
ui

si
ti

on
 c

lu
st

er
s

Pr
ov

id
es

 a
n

or
ga

ni
za

ti
on

al
 p

er
sp

ec
ti

ve

on
 p

ro
gr

am
s

A
cV

-2
Pr

og
ra

m
 ti

m
el

in
es

Pr
ov

id
es

 a
 ti

m
el

in
e

pe
rs

pe
ct

iv
e

on

pr
og

ra
m

s

68 Reggie Cole

The Open Group Architecture Framework (TOGAF) [21] is maintained
and licensed by The Open Group. While TOGAF does call out some
high-level viewpoints, it does not provide a specification for describing the
architecture, stressing instead the methodology and tools for doing archi-
tecture design.

A topic closely related to architecture frameworks is modeling languages.
The Unified Modeling Language (UML™) is a general modeling language
created to represent software-intensive systems [22]. While it has been used
to represent general systems, it is best suited for modeling software architec-
tures. The extension of UML to better represent system problems led to the
creation of SysML™ [23]. The creation of SysML is much more than a mere
tailoring of UML; it is a much more comprehensive modeling language for
describing systems. While neither UML nor SysML are architecture frame-
works, they both specify a modeling language that can be used in architec-
ture frameworks to create specific view products or models.

References
 1. ANSI/IEEE 2000. Recommended Practice for Architecture Description of Software-

Intensive Systems. Institute of Electrical and Electronics Engineers, 1471-2000.
 2. Asimow, M. 1962. Introduction to Design. Prentice-Hall, Englewood Cliffs, NJ.
 3. Cole, R. 2006. The changing role of requirements and architecture in systems

engineering. Proceedings of the First Annual IEEE Conference on System of Sys-
tems Engineering.

 4. Rouse, W. 2005. Enterprises as systems: essential challenges and approaches to
transformation. Systems Engineering Journal 8(2):138–150.

 5. Haskins, C. et al. 2006. INCOSE Systems Engineering Handbook. International
Council on Systems Engineering.

 6. Petroski, H. 2003. Small Things Considered—Why There Is No Perfect Design, Vin-
tage Books, New York.

 7. Faulconbridge, R. et al. 2003. Managing Complex Technical Projects—A Systems
Engineering Approach. Artech House, Boston, MA.

 8. Mayhall, W. 1979. Principles in Design. Van Nostrand Reinhold Company,
New York.

 9. Petroski, H. 1992. To Engineer is Human: The Role of Failure in Successful Design.
Vintage Books, New York.

 10. Char, G. 2006. Balancing abstraction and implementation constraints when
specifying problems. Proceedings of the First Annual IEEE Conference on System of
Systems Engineering.

 11. Meilich, A. 2006. System of systems (SoS) engineering and architecture in a net
centric environment. Proceedings of the First Annual IEEE Conference on System of
Systems Engineering.

 12. Johnson, R. et al. 1995. Design Patterns. Addison-Wesley, Reading, MA.
 13. Warkentin, M. and R. Vaughn. 2006. Enterprise Information Systems Assurance and

Systems Security: Managerial and Technical Issues, IGI Publishing, Hershey, PA.
 14. Clausing, D. and D. Fry. 2005. Improving system reliability by failure-mode

avoidance including four concept design strategies. Systems Engineering Journal
8(3):245–261.

Chapter two: SoS architecture 69

 15. Khoshafian, S. 2000. Service Oriented Enterprises. Auerbach Publications, Bos-
ton, MA.

 16. Zachman, J. 1987. A framework for information systems architecture. IBM Sys-
tems Journal 26(3):276–292.

 17. United States Department of Defense. 2007. DoD Architecture Framework Ver-
sion 1.5, United States Department of Defense.

 18. U.K. Ministry of Defence. 2007.The MOD Architecture Framework Version 1.1,
U.K. Ministry of Defence.

 19. U.S. Office of Management and Budget. 2006. FEA Consolidated Reference
Model Document Version 2.1, Office of Management and Budget.

 20. McGovern, J. et al. 2004. A Practical Guide to Enterprise Architecture. Prentice-
Hall, Englewood Cliffs, NJ.

 21. Dargan, P. 2005. Open Systems and Standards for Software Product Development.
Artech House, Boston, MA.

 22. Holt, J. 2004. UML™ for Systems Engineering: Watching the Wheels. 2nd Edition,
Institute of Electrical Engineers.

 23. Object Management Group. 2006. OMG SysML™ Specification, The Object
Management Group.

71

chapter three

Emergence of SoS,
sociocognitive aspects*

Beverly Gay McCarter and Brian E. White

Contents

3.1 Introduction..72
3.2 Scale or view ..75

3.2.1 Definition of view ..77
3.2.2 Mindset range: finite or infinite? ... 81
3.2.3 Multiview analysis ..83

3.3 Emergence ..85
3.3.1 Definitions of emergence ..85
3.3.2 Examples of emergence ..88
3.3.3 Beneficial emergence ... 89
3.3.4 Emergence and prediction ...90
3.3.5 Emergence and entropy .. 91
3.3.6 Emergence and surprise ... 91
3.3.7 Emergence in system of systems ... 93

3.4 Conclusion .. 102
References .. 102

This chapter offers a human-centric treatment of the concepts of multi-
scale analysis and emergence in system of systems (SoS)† engineering,

* Portions reprinted, with permission, from B. E. White, “On Interpreting Scale (or View)
and Emergence in Complex Systems Engineering,” 1st Annual IEEE Systems Confer-
ence, Honolulu, HI, 9–12 April 2007. © 2007 IEEE.

† The authors define a system as an interacting mix of elements forming an intended
whole greater than the sum of its parts. Features: These elements may include people,
cultures, organizations, policies, services, techniques, technologies, information/data,
facilities, products, procedures, processes, and other human-made or natural entities.
The whole is sufficiently cohesive to have an identity distinct from its environment. An
SoS is defined as a collection of systems that functions to achieve a purpose not gener-
ally achievable by the individual systems acting independently. Features: Each system
can operate independently and is managed primarily to accomplish its own separate
purpose. An SoS can be geographically distributed, and can exhibit evolutionary devel-
opment and/or emergent behavior [1].

72 Beverly Gay McCarter and Brian E. White

or more generally, complex systems engineering (CSE) [2]. This includes
a characterization of what an individual might do in conceptualizing a
given systems engineering situation s/he is facing. The authors suggest
fresh interpretations of the terms scale and emergence that will contribute
to a more collaborative approach to improving the CSE practice. Because
other authors use “scale” in several different ways, potentially causing con-
fusion, the present authors propose “view” instead. Here a given view is
defined as a combination of “scope,” “granularity,” “mindset,” and “time-
frame.” Although “emergence” has a rich spectrum of definitions in the
literature, the authors prefer to emphasize the unexpected, especially “sur-
prising,” flavor or emergence. In this endeavor sociocognitive aspects are
paramount, and in an age of increasing organizational complexity, small
group dynamics are becoming more significant. Human psychological and
social behaviors that impact information sharing, productivity, and sys-
tem interoperability need closer examination as organizations increasingly
rely on decentralization to achieve their goals. Therefore, this chapter also
highlights important dynamic social issues, although the authors do not
focus on trying to solve them. Rather, areas of further research are sug-
gested which can lead to better CSE, when people are considered part of
any (complex) system in the SoS.

3.1 Introduction
It is important to bring a degree of humility when approaching complex
systems engineering (CSE) problems to be solved or at least mitigated.
This is not a sign of weakness,* but a quality that can serve individuals
very well. More specifically, one needs to be aware and accepting of the
wide variety of views of reality taken by different individuals and cultures
around the world. One important dynamic issue that groups face is the
difficulty of members to fully understand that other group members may
not share their view of how the world is, or how they think it should be.
Lack of such awareness and understanding causes problems for both intra-
and intergroup interactions. Among the many factors that contribute to

* Even Albert Einstein was known as humble, not only in contemplating the universe
but also toward himself and his view of humanity: “Adding to his aura was his simple
humanity. His inner security was tempered by the humility that comes from being
awed by nature. . . . ‘It is rather naïve and imperfect, as might be expected from such a
young fellow like myself,’ Einstein confessed with a pretense of humility. . . . His reli-
gious feelings of awe and humility also informed his sense of social justice. . . . ‘What
separates me from most so-called atheists is a feeling of utter humility toward the unat-
tainable secrets of the harmony of the cosmos,’ he explained.” [3, pp. 5, 25, 385, and 389,
respectively]

Chapter three: Emergence of SoS, sociocognitive aspects 73

one’s unique world view are psychological, sociological, and even biologi-
cal factors.*

This has implications concerning why some people, in general, cannot
understand or are less willing to accept others’ perceptions of reality. This
is about the difficulty people—almost all people—have in fully embracing,
not just tolerating, the fact that no two people think or view the world in
precisely the same way. If something is outside one’s life experience, it is
very difficult for that person to envision it. It may be too “foreign” or con-
trary to those things they do perceive. This is a bit like trying to envision
infinity; people live life in a linear fashion with a start and a finish. There-
fore, typically it is very hard (or impossible) to imagine infinity. Again,
consider “instinct” as being patterns of behavior established over time
through repetition. Thus, it is hard to break such ingrained response pat-
terns. Couple that with the way the brain is hardwired, and one can begin
to see the difficult underlying dynamics involved with group interactions,
perhaps putting in question many management theories proposed over the
course of the past several decades. In Section 3.3, the authors will explain
how leaders need to bring this awareness to their own complex systems
arena, i.e., their organization.

To help facilitate progress, particularly in addressing the influences of
human nature, one must recognize that each person, as a consequence of
finite human brains and the limitations of human minds, sees a different
perception of any underlying (infinite) reality.† No one person can see the

* “How does the brain, with its diverse and distributed functions, come to arrive at a
unified sense of identity? . . . Could we speak of a person’s brain without, ultimately,
speaking of the person? . . . Belief in an inner essence, or central core, of personhood,
was called ‘ego theory.’ The alternative, ‘bundle theory,’ made more neurological sense
but offended our deepest intuitions. . . . [i.e.,] An embodied brain acts, thinks, has cer-
tain experiences, and that’s all. . . . The idea that certain forms of insanity were ‘dis-
orders of the self’ had been around for two centuries and more, but now the concept
was being refined. The core deficits of autism and schizophrenia, for example, were
revealed as faults in the brain circuits underlying personal awareness. . . . In the pro-
cess, it gave definition to that fundamental unit of social intercourse: the person. Just
as the brain had evolved systems for guiding interaction with the physical world so, we
rather belatedly realised, it had also evolved specialised mechanisms for enabling the
interaction of ‘self’ and ‘other.’” [4]

† There seems to be little doubt that reality exists; it is just that one can debate whether any-
one can claim to know reality directly. Again, some quotes about Einstein are of note: “For
all practical purposes, the physical reality of atoms and molecules was now conclusively
proven. ‘At the time atoms and molecules were still far from being regarded as real,’ the
theoretical physicist Max Born later recalled. ‘I think that these investigations of Einstein
have done more than any other work to convince physicists of the reality of atoms and
molecules.’ . . . Einstein’s fundamental dispute with the Bohr–Heisenberg crowd . . . was
about reality. Does it exist? More specifically, is it meaningful to speak about a physical
reality that exists independently of whatever observations we can make? ‘At the heart of
the problem,’ Einstein said of quantum mechanics, ‘is not so much the question of causal-
ity but the question of realism.’” [3, pp. 106 and 460–461, respectively]

74 Beverly Gay McCarter and Brian E. White

Gestalt, or complete/full view of complexity. People can only see one slice or
narrow perspective of it at once. However, how narrow or broad that slice is
depends on the inherent abilities of the perceiver. Different people see differ-
ent degrees of reality. One goal for easing interpersonal conflict is to not only
establish a tolerance for the fact that different people adamantly subscribe to
different views of reality, but to nurture abilities to actually “see” and accept
that all views of reality make up the totality of an infinite and complex real-
ity. This “realization” is not only relevant to individuals and leaders, but to
organizations and groups, as the authors will discuss in Section 3.3.

People should deal with ambiguous barriers of terminology before real
progress can be made in exchanging, correctly interpreting, and acting on
each other’s ideas. This process can do much to establish a feeling of trust, a
complex condition so necessary for true collaboration between individuals
and among groups. Again, notions of trust will be elaborated in Section 3.3.

Ryan [5] explains that ontology* is about “the study of being or reality or
existence,” and that epistemology is about “the study of knowledge.” Thus,
an epistemic “property depends on how reality is conceptualized, and that
is always relative to an observer and subjective.” Because of its psychological
theme, this chapter focuses on epistemic aspects of CSE and deemphasizes
the more scientific ontological counterparts.† That is, the authors emphasize
observation and subjectivity as opposed to reality and objectivity.‡

* “As a young empiricist, excited by his readings of Ernst Mach, Einstein had been willing
to reject any concepts that could not be observed, such as the ether and absolute time
and space and simultaneity. . . . In his maturity, Einstein more firmly believed that there
was an objective ‘reality’ that existed whether or not we could observe it. The belief in
an external world independent of the person observing it, he repeatedly said, was the
basis of all science.” [3, pp. 333–334]

† “‘Bohr and his adherents scoffed at the idea that it made sense to talk about what might
be beneath the veil of what we can observe. All we can know are the results of our
experiments and observations, not some ultimate reality that lies beyond our percep-
tions.’ . . . Einstein told Pauli that he still objected to the fundamental tenet in quantum
mechanics that a system can be defined only by specifying the experimental method of
observing it. There was a reality, he insisted, that was independent of how we observed
it. ‘Einstein has the philosophical prejudice that a state, termed “real,” can be defined
objectively under any circumstances, that is, without specification of the experimental
arrangement used to examine the system,’ Pauli marveled in a letter to Max Born.” [3,
pp. 460–461 and 538, respectively]

‡ Later in life Einstein gave more emphasis to ontology, especially in the context of quan-
tum mechanics, which he believed was incomplete. “‘A new fashion has arisen in phys-
ics,’ Einstein complained, which declares that certain things cannot be observed and
therefore should not be ascribed reality. . . . there is no single underlying reality that is
independent of our observations. ‘It is wrong to think that the task of physics is to find
out how nature is,’ Bohr declared. ‘Physics concerns what we can say about nature.’
This inability to know a so-called ‘underlying reality’ meant that there was no strict
determinism in the classical sense. . . . Einstein never fully came around, even as experi-
ments repeatedly showed quantum mechanics to be valid. He remained a realist, one
who made it his creed to believe in an objective reality, rooted in certainty, that existed
whether or not we could observe it. . . . When the talk turned to quantum mechanics, he

Chapter three: Emergence of SoS, sociocognitive aspects 75

3.2 Scale or view
Kuras and White [6,7] asserted that multiscale (multiview) analysis is crucial
to more effective CSE. It should not be unexpected that a number of care-
fully chosen perspectives can reveal, albeit sometimes surprisingly, patterns
that help one better understand SoS, or more generally, complex systems and
enterprises.* These different views, together, can elicit ideas for influencing
or shaping the environment of a complex system to help guide or shape it
toward more useful capabilities.

The increasing speed of change in many complex systems dictates that
one cannot “troubleshoot” problems† and engineer solutions as in the past.
One must be able to harness multiple views to see the Gestalt, or big picture,
including a system’s (or SoS’s) environment, and suggest ways to try to influ-
ence that environment or at least shape the system’s further evolution toward
better mission capabilities. A “realized” enterprise reinvents itself through
a process of continual innovation and integration that moves toward higher
levels of evolutionary progress, which also can be thought of as increased
complexity (see Figure 3.1). [10]

once again tried to poke holes in the idea that our observations can affect and determine
realities. ‘When a mouse observes,’ Einstein asked them, ‘does that change the state of
the universe?’“ [3, pp. 332–333 and 515, respectively] [Author’s comment on the latter
quote: Perhaps it does! Perhaps the multiplicity of observations is what makes such a
complex system. Perhaps that is why no one is able to have the full view of an infinite
reality . . . it is always in flux from a variety of sources.]

* The authors define a complex system as an open system with continually cooperating
and competing elements. Features: This type system continually evolves and changes
its behavior (often in unexpected ways) according to its own condition and its external
environment. Changes between states of order and chaotic flux are possible. Relation-
ships among its elements are imperfectly known and are difficult to describe, under-
stand, predict, manage, control, design, and/or change. Notes: Here “open” means
free, unobstructed by artificial means, and with unlimited participation by autono-
mous agents and interactions with the system’s environment. A complex system is
not necessarily an enterprise. An enterprise is defined as a complex system in a shared
human endeavor that can exhibit relatively stable equilibria or behaviors (homeosta-
sis) among many interdependent component systems. Features: An enterprise may be
embedded in a more inclusive complex system. External dependencies may impose
environmental, political, legal, operational, economic, legacy, technical, and other
constraints. Notes: An enterprise usually includes an agreed-to or defined scope/mis-
sion and/or set of goals/objectives. [1]

† “The traditional view of management is that the manager sees something that has not
gone according to plan and tries to fix it by ‘troubleshooting,’ trying to find the piece
that ‘broke’ and fix it. ‘The study of complex adaptive systems suggests that we might
be better off maintaining the anxiety, sustaining the diversity, letting the thing simmer
for a while longer to see what will happen on its own’ [8, p. 3]. For the manager, this cre-
ates a dilemma, even in the self-organizing environment. If one does not place sufficient
constraints and ‘control’ workers, they may reach a point where the organization goes
unstable. Yet too much control limits adaptability. Those running an organization, if they
want maximum learning and growth, have a very fine line to tread to maintain this.” [9]

76 Beverly Gay McCarter and Brian E. White

Complexity requires that leaders, in particular, look at the desired big
picture, and “tweak” selected variables they can control to try to steer their
organization in that general direction. Sometimes, it is more important
to postpone making decisions instead of trying to appear to be “in con-
trol,” e.g., behaving as an “alpha male” [13]. Could some erstwhile leaders
be reacting so quickly out of fear (a root cause of “rigidity of thought”*
that hampers them from embracing new ideas)? Do they need to “stop”
the problem in its tracks because of uncertainty in what may happen? A
research question to consider: Is this tied to the prevalent emphasis on risk
management instead of the pursuit of opportunity that seems so much
more appropriate in complex system environments [14]?

One needs to consider an alternative mindset: short-, mid-, and long-term
plans must continually change to better adapt to uncontrollable and unpre-
dictable environments. Rather than making early decisions, to appear asser-
tive and in control, for instance, a more informed policy would argue for
encouraging variety to accelerate processes of natural evolution and waiting
until it becomes clearer what to shape or select. A good research question:
What are some 20% to 80% rule heuristics for telling a leader when one needs
to stop learning and intervene by making a decision? Perhaps this is where
the recent neuroanatomy/evolutionary biology research about how these
“instincts” evolve will be helpful. As mentioned earlier, behavior patterns
learned over time can become “instinctive” due to the neural pathways in the
brain that are created. One no longer needs to think about what should be
done, one just reacts. Can this research be used in conjunction with research

* This is a phrase from psychology labeling a tendency to stick to one’s current mindset,
outlook, or belief system, leading to inflexibility in thinking that can hinder changes or
adaptability in behavior or responses to stimuli.

Innovation (Differentiation)

Integration

Integrated
&

Unchanging

Unorganized
&

Unchanging

Unorganized
&

Complex

Integrated
&

Complex

Innovation (Differentiation)

Integration

Variation

Selection

Variation

Influence or Shape

Selection

Figure 3.1 Ever increasing complexity through iterative combinations of innova-
tion and integration using continual variation and selection techniques [11] (after
Gharajedaghi, 1999; [12]).

Chapter three: Emergence of SoS, sociocognitive aspects 77

about “mirror neurons” [15,16] to develop new training programs that get
people to “break” rigid constructs of reality and their “instinctive” reac-
tions that may no longer be appropriate? Standard counseling psychology
techniques, incorporating many from group therapy, such as are implied in
coaching alpha males [17] can be used as well.

Running an organization has a strong “art” component, because leaders
need to understand themselves (first) as well as other people and their indi-
vidual psychologies. Interpersonal dynamics do not always just involve the
group members; sometimes it is the behavior of the leader that really matters.
These understandings are critical to their success as leaders in shaping how
their organization should evolve.* , †

The authors now discuss, a little more precisely, what they mean by view.

3.2.1 Definition of view

A specific instance of view is defined as any combination of scope, granularity,
mindset, and timeframe. Each of these latter terms is defined as follows.

Scope: What is included in an individual’s conceptualization.
Notes: Conceptualization is akin to perception (e.g., visualization). An

individual’s conceptualization is affected by a host of variables, both physi-
cal and nonphysical. For example, everyone experiences the same color in
different, albeit mostly similar, ways, as a function of how a given subband
of wavelengths affects the optical system of the eye and brain, and what
psychological factors of the mind may be associated with certain colors.
Therefore, it should be readily easy to accept that no two people “see” real-
ity in the same way. Specific analogies of scope are the field of view (FoV)
of a camera, or more appropriately here, the “mind’s eye.” When one sets

* “If there is too much change and freedom, then their system can tip over into chaos—
witness what happens in a revolution, for example. Too little innovation, and systems
become rigid—totally predictable but able to respond only through tried and estab-
lished methods. Governing an organization is therefore an art, and there needs to be
constant monitoring of the system to check which way it is heading. If it is becoming too
stable, then change and a degree of freedom, perhaps through decentralization, need to
be introduced to push the system back to complexity. Conversely, if there is too much
change and the system is threatening to melt down, restraints and disciplines must be
quickly reinforced.” [18, p. 16;9]

† “. . . view your organization as a complex system rather than using the machine meta-
phor; provide minimum specifications, and don’t script plans in minute detail; don’t
always ‘go with the data’ when ‘going with your gut’ feelings may be more appropriate;
take your organization to the ‘edge of chaos’ by fostering a level of anxiety, diversity,
discomfort, and contentiousness to promote creativity; take advantage of paradox and
tension rather than fighting them; let solutions to knotty problems emerge; promote
informal communication networks in the organization rather than banishing them; and
use the ‘tit-for-tat’ strategy of competition-cooperation to forge positive, symbiotic rela-
tionships as a first strategy and abandon that as a strategy only when your ‘partner’
does not reciprocate.” [9]

78 Beverly Gay McCarter and Brian E. White

or determines scope, by definition, this means that everything else, not in
scope, is “abstracted out,” e.g., not “seen” by that individual, at least in that
view, because those things are not relevant to the person’s intended present
state of being, e.g., purpose.

Granularity: The ability of a person to discern and discriminate individ-
ual items of a conceptualization.

Notes: Granularity is akin to a capability to observe details, e.g., it is like
resolution. Subsets of detailed items will likely include arrangements or pat-
terns, some of which may not be discernable in other views.

Mindset: What currently captures an individual’s attention in a
conceptualization.

Note: Mindset is akin to one’s cognitive focus that may observe or contem-
plate, e.g., within his/her scope and with the associated granularity, a single
object, pattern, notion, or idea, or collection of such elements. Rigidity of
thought and its inherent influences undoubtedly comes into play here.

Everyone’s view of reality is bounded, often rigid. Many factors influence
mindset, e.g., the way the brain is “hardwired,” brain chemistry, how one
was raised, relationships with siblings, culture, life experiences, and physical
embodiment. Like how one sees a color, life events are seen differently, e.g.,
witnesses’ varying descriptions of criminal events—often not seeing what in
actuality was there when they did not expect it to be there.

One’s mindset is also influenced by beliefs. Fundamentalism is a “safe
haven” in a world of uncertainty and confusion.* One does not have to think
or understand; one just has to believe. This allows people to avoid dealing
with uncertainty when faced with the fact that they cannot “know” the
full complexity that surrounds them. There is a strong analogy here (again

* “Not everyone, however, sees fundamentalism as inherently damaging. Some scholars
believe that, by offering psychological security and social identity to people otherwise
adrift, it offers the best hope for a stable future. ‘A case can be made that someone with
a strong, confident religious identity is better qualified to survive in a globalising world
of shifting and collapsing identities,’ says historian Philip Jenkins of Pennsylvania State
University. . . . Some scholars even argue that fundamentalism is religion’s last hurrah.
Jenkins says the history of movements such as Calvinism suggests that fundamentalist
movements eventually become secular. Fundamentalism, he suggests, may be a ‘neces-
sary way station on the road to enlightenment.’” [19] Indeed, often, a complex system
will swing to the extreme (edge of chaos?) as it gradually defines or shapes the median,
or middle, path, somewhat akin to statistical regression to a mean. Joe DeRosa gave an
example of this at a 12 September 2007 New England Chapter meeting of the Interna-
tional Council on Systems Engineering (INCOSE). In a “minority game” a group of indi-
viduals in a room is told up-front that each person is to choose, independently, without
collusion with others, one of two walls, and to walk over there. The group then observes
the distribution of people along both walls. This process is to be repeated a number of
times. After the last iteration those by the wall with the fewest people will win a prize.
Once everyone understands the rules of this game and is motivated to win a prize, the
game begins. Remarkably (and in other games similar to this), there is a rather uneven
distribution during the first several iterations but the end result yields roughly the same
number of individuals again each wall.

Chapter three: Emergence of SoS, sociocognitive aspects 79

involving rigidity of thought) that informs us about why “heroes” in small
working groups may be ostracized. They may perceive solutions or problems
in ways not often seen or understood by the rest of the group and threaten
the common view of the way things should proceed in the workplace. They
see a more comprehensive slice of reality than those around them can see.
Again, this points to the need to embrace uncertainty, understanding and
accepting that an infinite number of views of reality make up the complex
system that surrounds us. Each “slice” or view of reality is a partial “truth”
making up the whole. There is no “wrong” view—it all is part of the gestalt,
all of it partially correct. Many of the ideas espoused in [17] about coaching
alpha male executives apply here, as well.

The aforementioned recent research on mirror neurons* is exciting
because it gives some physiological basis and understanding for what may
underlie a person’s mindset as well as some destructive group dynamics.
Mirror neurons are a physical clue to embracing and understanding anoth-
er’s perspective—putting oneself in someone else’s shoes, as it were.

Timeframe: The time interval of an individual’s conceptualization.
Note: Timeframe is akin to temporal component of one’s conceptualiza-

tion, e.g., the timescale over which it occurs.
These four dimensions of view are illustrated in Figure 3.2. Scope goes

from small to large, and granularity goes from coarse to fine. The mindset
axis is more general, in that it cannot be characterized by such a qualitative
descriptor, as indicated by the “…”s at each end of the double-sided arrows.
Timeframe is envisioned as the three dimensions {scope, granularity, mind-
set} moving within the fourth dimension of time. Each of these four axes
can represent an infinite (unbounded) number of possibilities from which an
individual might select in forming a conceptualization.

Figure 3.2 attempts to represent, abstractly, one’s potential views of a com-
plete complex system; one’s “slices” or views of reality fall in the gray area.
No one is able to see all (an infinite number) of the variables making up a
complex system. Our brains are limited, and complexity is unlimited. Diver-
sity of views is helpful, despite the conflict it also causes, because it pushes

* “The discovery of ‘mirror neurons’ in the 1990s . . . Mirror neurons were activated not
only in response to self-generated behaviour (reaching for an object, say) but also in
response to actions performed by other individuals. Pain and emotional behaviour
were similarly mirrored. . . . We were a composite of two phantoms. . . . The so-called
‘minimal’ or ‘core’ self—was, . . . ‘a transient entity, recreated for each and every object
with which the brain interacts.’ . . . The other phantom was the ‘extended’ self: a unified,
continuous being journeying from a remembered past to an anticipated future, with a
repertoire of skills, stores of knowledge and dispositions to act in certain ways. This
‘autobiographical’ self emerged from language and long-term memory networks. . . . We
are all just a stumble or burst blood vessel away from being someone else. Selfhood is
malleable. . . . The neurological diseases . . . tended to [show that] one occasionally saw
what appeared to be clear dissociations of the two ‘selves.’ . . . [Also,] Now it is not so
clear where one person ends and another begins.”[4]

80 Beverly Gay McCarter and Brian E. White

the boundaries of rigidity of thought. It helps to reveal more aspects of the
complex system, more “slices” of the whole complex “pie.”

In terms of quantum mechanics one sees a parallel to complex systems.
Similar to the Heisenberg uncertainty principle, there is a limit to how much of
a complex system an individual is able to “see” at one time due to our limited
views of reality. One cannot see it all, just as a physicist cannot measure both
the time and place of a quantum particle accurately. Each individual’s view of
reality is different. Not only that, but some are able to see or comprehend more
than others. The more perspectives or views of reality one is able to embrace,
the greater the understanding of the complex system one holds. The ability to
embrace multiple perspectives or views of reality can be taught. Although still
subject to careful interpretation and even somewhat controversial, research is
showing that mammal brains can change and expand neural pathways. Even-
tually, this may lead to a greater understanding of different (and hopefully,
improved) ways of thinking and behaving. [20–22]

This is consistent with Kuras [6] saying that no one has a true percep-
tion of the underlying reality of any situation.* Kuras said the brain has a

* Considering the footnotes of the Introduction, Einstein might have asserted something
similar.

A change in a mind’s focus
results in a change of view!

No view change can take one
beyond this limit!

Mindset
(e.g., cognitive focus)

{View} = {Scope, Granularity, Mindset, Timeframe}

Granularity (e.g., resolution)

Scope
(e.g., FoV)

Small
FineCoarse

Time

Large

Accessible Region
(where that human
can conceptualize)

Inaccessible Region
(where a given human
cannot conceptualize)

SoS

Enterprise

System

Figure 3.2 Conceptual definition of human perceptions of view.

Chapter three: Emergence of SoS, sociocognitive aspects 81

finite number of neurons,* and therefore, is ultimately of limited capacity to
observe everything accurately. For example, imagine actually trying to locate
the proverbial needle in a haystack, or to list all outcomes of an organiza-
tion’s current endeavors. This implies, for example, that everyone has limits
to the ranges of scope, granularity, and timeframe that can be perceived. This
region of space within which one (a given person) cannot conceptualize is
depicted by the inaccessible black region of Figure 3.2. The gray region is the
space in which that same person can perceive or visualize. (In this abstract
space, the black and gray regions of any two individuals are deemed to be
different.) Along the mindset axis (see Section 3.3.2, Mindset range: finite or
infinite?) the range of these regions is depicted as infinite.

Furthermore, each person has a different, or at least distinct, perception
of that reality. As Ryan [25] said (see Section 3.3.1, Definitions of emergence),
“When practical limitations are the cause, [a] property [of a macrostate] may
appear to be emergent to one observer, but is not emergent to an observer with
a deeper understanding of the microstate.” Sheard [26] used the analogy of the
Grand Canyon, where the subcanyons correspond to distinct realities of people.
Sheard suggested that achieving a better understanding of something with just
one’s own viewpoint is limited, and the existence of other competing points of
view is necessary (in the present authors’ terms) for accelerating the evolution
of CSE. This is a fundamental point (see the Introduction) in being able to see
and handle the confounding properties of complex adaptive systems.

3.2.2 Mindset range: finite or infinite?

Consider whether a person’s mindset has a finite or infinite range. The authors
believe that the range of the mindset axis is infinite because of analog prop-
erties of the brain’s physiology and because of the emergent properties of the
mind (see Section 3.3.6, Emergence and surprise). Various references in the
literature [27–29] are quite convincing in this regard. For example:

C. W. Johnson [30] “. . . it makes little sense to talk of
human cognition in terms of individual neurons. Con-
sciousness is intrinsically a systems level property
quite distinct from the underlying physiology of lower
level components.”

* It is better to say one has a finite number of neurons at any given time. Current research
[23,24] suggests one is able to generate vital new neurons, and that old neurons atrophy.
In addition, the brain’s “circuits” can adapt. [20, p.112] But, even so, we still have a finite
ability to view the whole of any complex system.

82 Beverly Gay McCarter and Brian E. White

Ryan [25] states: “Even though formal and social sys-
tems must both ultimately have physical instantiations,
they do not have obvious bounds . . . on possibilities.
For instance, although the number of distinct thoughts
a human mind will have in its lifetime is finite, we
apparently cannot specify in advance any finite set
containing every possible thought, nor determine the
finest possible distinction between two thoughts the
mind is capable of making.”

So, although any individual can have only a finite number of distinct
thoughts in a lifetime, the set, and by implication the range, from which those
thoughts can be selected is infinite!

The authors feel that the mind’s potential is unlimited. The mind is the
emergent phenomenon of the brain. Consciousness is a prime example; the
individual neurons and parts of the brain by themselves cannot account for
consciousness, and the actions of consciousness are much more than the biol-
ogy of the parts of the brain. The very definition of emergence is one that
implies infinity, and just as the universe is infinite* on a macro scale, the mind
is infinite on the micro scale, or perhaps, on a different plane in reality.

Clearly, this is a philosophical question that goes beyond an analytical
approach considering only the number of neurons (or synapses) involved;
counting the number of brain parts and their interconnections in upper-
bounding the number of conceptualizations possible is too simplistic. Much
larger questions have been raised in terms of what is computable in the uni-
verse [31,32]. People seem to view the world with an infinite range of realities.
Many are sure, adamantly, of their own view’s “truth.” But the true elusive
reality encompasses all of the “subrealities” making up the complete com-
plex system. Accepting and embracing this notion requires one to embrace
uncertainty, that no one person can truly know the whole picture. But uncer-
tainty is one of the most difficult states for most individuals to embrace. It
means one has a lack of complete control in their life (where the balance of
control and no control is itself uncertain), and one cannot predict with any
certainty what course life will take.

* For all practical purposes the authors (and perhaps most other people) cannot conceptual-
ize something that does not end. As human beings we need to think in terms of finiteness.
Because of this, hearing that the universe may be finite, “curving” in upon itself as sug-
gested by Einstein’s general theory of relativity, one naturally asks, well what’s outside it
then!? If nothing is outside, not even a pure vacuum, i.e., if the (finite) universe is all there
is, then mustn’t the universe be infinite?! Then there is the “side information,” adding
to the confusion, that the universe presently is expanding, and at an accelerating rate.
Einstein used the analogy of an unending traversal of the surface of the earth’s globe, a
finite object. Returning to the same spot would occur at a different (future) time, so in this
sense, one can traverse “forever” without end. All this is truly mind boggling.

Chapter three: Emergence of SoS, sociocognitive aspects 83

3.2.3 Multiview analysis

Kuras has argued that scale (the authors’ view) is tied to mindset mainly
(i.e., {view} ≈ {mindset}), although Kuras admits that scope and/or granular-
ity often change with one’s change in mindset [33]. In the authors’ opinion,
this interpretation with its emphasis on mindset is too restrictive. However,
as indicated by the note in blue font in Figure 3.2, a change in mindset does
lead to a change of view. See Figure 3.3 for two rather famous examples of
this [34]. Again, according to the authors’ definition, one’s view can change
if any of the four components (scope, granularity, mindset, or timeframe), or
any combination of these components changes.

Referring to Figure 3.2, the note in red font indicates that no view change
can take one from the gray region into the black region. For example, suppose
one is working on an SoS at some combination of scope, granularity, mindset,
and timeframe within the gray region and in the vicinity of the red arrow-
head. Assuming for now that the mindset and timeframe remains the same,
one cannot simultaneously increase both the granularity and the scope; one
must be content with increasing either component of view and decreasing
the other component accordingly to move along the gray side of the diagonal
boundary between the two regions. Increasing scope and decreasing granu-
larity by some amounts can be akin to viewing a larger enterprise of which
the SoS may be a part. Conversely, increasing granularity and decreasing
scope by similar amounts corresponds to viewing a particular system that
may help compose the SoS. By analyzing both these new views, as well as the
original view, one should be able to learn more about the underlying reality
concerning the work, thereby enhancing one’s understanding of what to do.
By taking advantage of changes to mindset and timeframe, as well, there
is an increased richness to be had in solving particular problems of press-
ing importance. It should be better to consider different perspectives rather
than continually trying to “beat a problem into submission” using only one

Left: Rabbit facing to the right,
duck to the left. Familiarity
with rabbits and ducks
is required to see both
animals.

Right: Our mind assumes
that the most likely
interpretation of this
image is that of an
object in front of
other objects. So, we perceive a
square.

Figure 3.3 Changes in mindset result in two distinct views.

84 Beverly Gay McCarter and Brian E. White

particular view. Using only one point of view and making the problem “fit”
that view is limiting and inherently self-destructive in problem solving. One
must embrace multiple perspectives on a problem in order to perceive pos-
sible working solutions to it. Similar to a wall, some limited views of reality
can block our ability to see the operating dynamics underlying a particular
problem.

Thus, the usual vertical view of enterprises, SoS, and systems can be
tilted to one side as in Figure 3.2 and interpreted in the context of concep-
tual multiview analysis of a single complex system. Typically fine-grained
granularity and narrow scope will be more appropriate for individual sys-
tems, particularly automatons, while coarse-grained granularity and broad
scope will be more appropriate for aggregations of autonomous agents (e.g.,
individual human beings) mixed with large numbers of autonomic units in
social systems such as enterprises.

Human intuition processes information at higher brain levels than one
is consciously aware, laterally “connecting the dots” of minute information
subconsciously and consciously gleaned through observations. [35,36] Some
people do not react in predictable and rational ways as perceived by others’
expectations. (Someone with a similar view may find them eminently pre-
dictable and rational.) For them, using rational (only) methods (from these
others’ viewpoints) will not work as intended, so how do leaders deal with
them in the workplace? “. . .

 1. Increase the flow of information in the system.
 2. Use fundamental questioning to keep organizational members think-

ing about solutions to organizational problems.
 3. Keep the size of work teams to 12 or less, and organizational units to 150 or

less, to be consistent with the number of relationships people can handle.
 4. See the manager as a participant and part of the work system, rather

than as an outsider.
 5. Promote redundancy, and fight against the traditional practice of

guarding information and skills to ensure longevity or security.
 6. Don’t be afraid of letting unstable situations simmer until a solution

emerges rather than forcing a solution.
 7. Consider doing large group interventions where the people put in a

room to solve a problem are not just organizational leaders, but a cross-
section of organizational members.” [9]

Here are the authors’ selected comments: 1—As alluded to above, what is
the critical point that causes too much friction and a collapse of the system?
3—What is the critical number of relationships people can handle? 5—How
does a leader get people to trust and to share information? How does one get
them to step outside their basic human nature? It takes time to build trust in
a traditional way. Is the time available in a complex structure where things
happen very rapidly? How can a leader “shortcut” the time needed to develop

Chapter three: Emergence of SoS, sociocognitive aspects 85

a relationship and build trust, as well as group cohesion? Group cohesion and
trust among members often can be built through “in-sync” physical activities,
through enduring hardships in the group, as well as through problem solv-
ing as a team. But these methods take time to accomplish. 6—Again, move
away from the macho, decision-making hierarchical culture of the alpha male.
7—This may cut down on “group think,” but what about intimidation and
fear of those who are not organizational leaders? How does a leader minimize
subtle and overt intimidation tactics?

Now that some of the sociocognitive aspects of human perception, indi-
vidual viewpoints, multiple perspectives, and multiview analysis of complex
systems have been covered to some degree, the authors are ready to discuss
the concept of emergence in an SoS.

3.3 Emergence
Emergence in an SoS is a result of what happens within and among the sys-
tems comprising the SoS, including human actions and relationships. The
focus here is not on this objective (ontological) aspect of emergence but rather
on the observed (epistemic) aspect involving human cognition, perception,
and conceptualization, often involving multiple viewpoints. Intuitively, the
authors feel that emergence is a word that suggests the unexpected, some-
thing that one is not looking for but that suddenly appears. However, others
feel differently. Thus, it is useful to first explore various definitions of emer-
gence. Then some examples are given, and several properties of emergence
are examined. Finally, the authors more specifically address the role of emer-
gence in an SoS.

It is assumed that most SoSs of current interest imply the existence of pro-
grammatic organizations that are attempting to assemble, manage, or at least
oversee those SoSs, where the component systems of each SoS are, in turn,
managed by a distributed set of essentially independent organizations. In
such cases sociotechnical factors concerning organizations, decentralization,
and trust are quite relevant. Therefore, the authors also intersperse relevant
thoughts regarding these topics.

3.3.1 Definitions of emergence

[30] and [37] both make a basic point: There is no concise, precise, and gener-
ally accepted definition of emergence. True, but this can stimulate interest
and productive dialog.

The authors prefer the following definition.
Emergence: Something unexpected in the collective behavior of an entity

within its environment, not attributable to any subset of its parts, that is present
(and observed) in a given view and not present (or observed) in any other view.

Notes: Some people employ a broader definition of emergence where things
that emerge can be expected as well as unexpected [38]. The authors prefer to

86 Beverly Gay McCarter and Brian E. White

consider expected things to be intentional, designed in, known in advance,
explainable with hindsight or deconstructed analyses, or at least not very
surprising (e.g., although human evolution or cognition may not be easily
explained, these general states of being are no longer surprising), and not
warranting special recognition of having an emergent property. The authors’
emphasis on the unexpected in the above definition is intended primarily to
motivate the development of very adaptable and robust management pro-
cesses in CSE which can deal more effectively with surprises that inevitably
occur in complex systems, in general, and SoSs in particular.*

Grobman’s paper on complexity and organizational change [9] provides
many insights about complex systems and how the science of complexity
can inform the topic of organizational dynamics.† This seems especially
apropo when applied to an Organization managing an SoS. [The authors are
designating such an Organization with a capital “oh” to distinguish it from
organizations managing the individual systems of the SoS.] More empirical
data certainly is necessary to help bolster the complexity theory concepts in
systems engineering environments.‡ This is a “chicken-and-egg” problem: In
situations typical of the existing military acquisition environment, for exam-
ple, organizations may be reticent to apply complex systems engineering
techniques until they have been “validated.” However, as can be appreciated,
it is more difficult to apply the scientific method strictly to investigations

* The Black Swan [39] is highly recommended. The author of this book, Nassim Taleb, treats
the importance of being aware of the possibility of highly unlikely but high-impact
events, and advocates sound logic in considering complete sets in the event domain
when trying to attribute causes.

† “In an environment that seems to be changing, organizations want to be more adaptable
and better able to learn from experience in order to reconfigure themselves in the face of
new demands [40, p. 373]. Cohen goes on to give other reasons as well: the acceleration
of information technology revolution and its taxing of our ability to process informa-
tion and data, and the degree to which organizations are being created, dismembered,
and dismantled. The boundaries of organizations have been permeated through the use
of virtual organizations, consultants, outsourcing, temporary hires, and ad hoc teams.
Some of these developments can be described easily using the concepts of complexity
theory, which, along with chaos theory, are useful in describing the rapid transforma-
tions undergone by nonlinear dynamic systems such as organizations.” [9]

‡ “Complexity theory is a new way of looking at how complex structures form, adapt,
and change. . . . it remains to be seen whether it can be successfully applied to organiza-
tions. . . . there is a paucity of empirical data confirming that organizations designed on
this new model are more effective and efficient. There is a view that . . . self-design is
more in line with emerging philosophical and ethical views about the workplace. In a
normative sense, a complexity theory view can be considered more humanitarian and
ethical. Writers in the field, in addition, suggest that organizational designs based on
this new paradigm are likely to be more efficient and effective in turbulent environ-
ments. As more and more large organizations change their organizational design model
to follow the prescriptions of complexity theorists, there will be more opportunities to
judge whether these new designs work. This suggests a research agenda that uses the
scientific method to determine whether the principles advocated by complexity theo-
rists in the organizational arena can truly improve organizational performance.” [9]

Chapter three: Emergence of SoS, sociocognitive aspects 87

of human behavior—there are inherent limitations in relying solely on this
approach. Again much research and experimentation remains to investi-
gate how organizations can benefit from complexity theory. On the other
hand, rather than wait for validation, those in authority should encourage
the development of more agile management techniques. Then they can try
out with greater confidence some complex systems engineering principles
experimentally within their domain, with a better chance of not only pur-
suing promising opportunities but also limiting the damage if unexpected
negative results begin to appear.

A rather comprehensive treatment of various definitions of emergence is
found in Fromm [41]. S. Johnson [28, pp. 18, 21] discusses “the movement
from low-level rules to higher-level sophistication . . .” and “. . . self-organi-
zation, of disparate agents that unwittingly create a higher-level order.” [37]
says “. . . emergence has to do with qualitatively different kinds of descrip-
tion being appropriate to different levels of abstraction. . . .”

Bar-Yam [42] states “Emergence is . . .

 1. . . . what parts of a system do together that they would not do by them-
selves: collective behavior.

 2. . . . what a system does by virtue of its relationship to its environment
that it would not do by itself: e.g. its function.”

Bar-Yam also gives good explanations of how—in terms of the two exam-
ples [see Section 3.3.2, Examples of emergence]: the trees and their forest; and
a key and its lock—these two pieces of his definition relate to each other.

Ryan [25]: “Definition 1 (Emergent property). A prop-
erty is emergent iff [if and only if] it is present in a
macrostate and it is not present in the microstate.”
“Definition 4 (Novel Emergent Property). A property
is a novel emergent property iff it is present in a mac-
rostate but it is not present in any microstate, where
the microstates differ from the macrostate only in
scope.” “Definition 5 (Emergence). Emergence is the
process whereby the assembly, breakdown or restruc-
turing of a system results in one or more novel emer-
gent properties. . . .”

It seems that Ryan’s revelation that emergence only has to do with scope
[with granularity held fixed] comes from these definitions! Why can the reverse
not also be true?! I.e., why can one not see something “emerge” when observ-
ing a view with more granularity, even though the scope has not changed!?

88 Beverly Gay McCarter and Brian E. White

3.3.2 Examples of emergence

As evidenced just above, the authors think that unexpected emergence
should include what might happen to an observer experiencing an increase
in granularity, perhaps accompanied by a decrease in scope. A hypotheti-
cal but likely actual example of this corresponds to a biological research-
er’s observation of previously unknown patterns in a microscope view of a
cell. One sees a “pattern” not otherwise observed because of an increase in
granularity (resolution), not an increase in scope. Nevertheless, the pattern
that emerges can still be thought of as a macrostate effect from a microstate
cause. As opposed to situations where the granularity becomes fine enough,
the authors suspect that behavior that only starts to occur when the scope
becomes large enough is more germane to the issues SoS engineers face.
Again, the underlying behavior (that would lead to emergence) is ongoing
whether it is seen or not.

Other examples, this time where the scope does not change, also can illus-
trate emergence with an increase in granularity. Suppose a vu-graph projec-
tor is out of focus enough so that at first the projected image on the screen or
wall suggests to the observer just a blob of blurry colors or shadings. Then
suppose the projectionist improves the focus so that an observer sees what s/
he thinks is a mosaic art form. The observer could term this mosaic emergent
but perhaps not surprising. Finally, when the focus is sharpened further, the
observer sees that the mosaic is actually comprised of a collage of detailed
but unrelated photographs of objects/subjects/scenes; this emergence could
be deemed surprising but explainable. One might argue that neither of these
steps constitute true emergence, because subsets of the image could reveal
the same quality.* However, in another instance in this vein, the blurry image
or mosaic might turn into a well-known, 8×8 pattern of squares, and voilà,
a chessboard emerges. In this case, no subset of these 64 squares constitutes
an official chessboard, so the definition of emergence is satisfied in the sense
that the emergent property cannot be ascribed to any subset of the whole.

* In art one finds examples of this in both Pointillism and Impressionism. As one main-
tains a certain distance from a painting, for example, the images on the canvas appear
realistic. But while still taking in the whole painting, as one moves closer to the work,
the individual marks appear, and the painting takes on an abstract quality—the realism
seems to diminish greatly. The scope has not changed, unless one changes the area of
cognitive focus (recall the definition of scope and mindset) away from the whole paint-
ing. On the other hand, one might say that the definition of emergence is not satisfied
because one can see this abstract quality from only a subset of the painting. This elicits
a related thought. With averted vision one may be able to see movement, phase transi-
tion, or patterns of emergence within the scope of the contained system as granularity
is increased [43]. Research in modeling has shown that one can see patterns in bird
flocks by just noticing, in a vision-averted sense, three or four individual birds scattered
throughout the flock. A similar phenomenon is at work in picking out four-leaf clovers
in a bed of normal clovers.

Chapter three: Emergence of SoS, sociocognitive aspects 89

Ryan has two good examples of emergence that are neither surprising nor
unexpected, a Mobius strip [25] and;

The orchestra produces an emergent property, call it a
symphony. It is emergent because none of the compo-
nents . . . could produce it in isolation. [44]

Norman [44] commented:

[The Mobius strip] exists outside of the conceptualization
of any human. . . . So, there exists a phenomenon which
shows itself only upon closure of a specific relationship
[twisting and attaching the ends of the rectangular strip
of paper]. What should we call this? In the case of the
Mobius strip it [is] the “emergence” of one-sidedness.

3.3.3 Beneficial emergence

Emergence can have benefits, consequences, or irrelevant or as yet undeter-
mined effects.

Mogul [45]: “Emergent behavior can be beneficial. . . . But
it is not always beneficial. . . . I will use the term ‘emergent
misbehavior’ to focus on problematic behavior. . . .”

The authors are more interested in pursuing opportunities associated
with beneficial emergent behavior, although one certainly needs good man-
agement heuristics to help determine when emergent behavior is “bad,” as
indicated previously. Also of interest is how to recognize correctly that not all
group dynamics traditionally viewed as “bad” (e.g., of the “conflict” variety)
really are so. Such behavior is bad only when people become mean spirited
and aggressive. Conflict has tremendous creative potential when its power is
harnessed and allows the passion of ideas to be heard without it becoming
personal and vindictive.

Boardman and Sauser [46] include “foreseen or deliberately designed in”
emergence for an SoS. However, they acknowledge that some emergent behav-
ior (especially the undesired kind) can be unexpected. Again the authors
acknowledge that some (nonemergent) behavior can be “designed in,” but pre-
fer to reserve emergent behavior for the unexpected. It seems the most one can
do is design in “wiggle room” to allow the possibility of adapting future direc-
tions to accommodate (what is likely the inevitable) unexpected emergence.

C. W. Johnson [30]: “. . . there are many systems level
properties that are not directly related to system sub-
components but which might be predicted. . . . For

90 Beverly Gay McCarter and Brian E. White

example, ‘risky shift’ occurs when greater risks are
accepted by groups than would have been taken by
individual team members. . . . Designers can, therefore,
take steps to guard against these behaviors that might
otherwise compromise [CSE].”

This is interesting in its own right regarding group dynamics [10].

3.3.4 Emergence and prediction

Mogul [45]: “Emergent behavior is that which cannot
be predicted through analysis at any level simpler than
that of the system as a whole. Explanations of emer-
gence, like simplifications of complexity, are inherently
illusory and can only be achieved by sleight of hand.
This does not mean that emergence is not real. Emer-
gent behavior, by definition, is what’s left after every-
thing else has been explained.”

The last part of the definition resonates with the emphasis the present
authors are placing on unexpected and unexplainable emergence. Note that
emergence often is explainable after it is recognized, studied, and analyzed.
To prepare better for the possibilities of high-impact (albeit perhaps very
unlikely) future unknown unknowns (i.e., Black Swans [39]) one should
endeavor to exert more effort and resources into explaining those heretofore
unexplained emergent events.

Abbott [47]: “. . . we have no idea how to build simula-
tions that can identify emergent phenomena—or even
more difficult, how to identify the possibility of emer-
gent phenomena. . . . I called this the difficulty of look-
ing upward.”

This is an important point to make about emergence; the school of thought
the authors are subscribing to has said all along that particular outcomes
that emerge (i.e., specific emergent properties) are not predictable.

S. Johnson [28]: “But it is both the promise and the
peril . . . that the higher-level behavior is almost impos-
sible to predict in advance. . . .” “. . . understanding
emergence has always been about giving up control,
letting the system govern itself as much as possible,
letting it learn from the footprints. . . .”

Chapter three: Emergence of SoS, sociocognitive aspects 91

One can predict there will be emergence if the system has characteristics
of a complex system but one cannot prespecify what behaviors will emerge.
Although outcomes may be surprising, the fact that they occurred is not (see
Section 3.3.6, Emergence and surprise).

C. W. Johnson [30]: “. . . complexity [is] one of the most sig-
nificant ‘macroethical’ questions . . . ‘the key point is that
we are increasingly building engineered systems that,
because of their inherent complexity, have the potential
for behaviors that are impossible to predict in advance.’
A recurring theme . . . will be the ‘surprise’ that engi-
neers often express following adverse events. . . . inci-
dents revealed traces of interaction between operators
and their systems that arguably could not have been
anticipated using current engineering techniques.”

3.3.5 Emergence and entropy

Weeks et al. [48] illustrate the concept of increasing the mutual information
between the system specification, S, and the implementation (“language”), L,
as development proceeds. In itself, this makes sense to the present authors.
However, they define the amount of emergence as the mutual information,
or correlation, between S and L, i.e., the entropy H(S) minus the conditional
entropy, H(S|L). The present authors do not use this definition of emergence.
Further, Weeks et al. characterize H(S|L) as “surprise”; agreed—that inter-
pretation, i.e., the (unexpected) uncertainty that remains after implementing
the system, seems to be of greatest importance. They also say “. . . a system
exhibits minimal emergence when everything is a surprise (zero mutual
information).” The present authors feel, to the contrary, when everything is
a surprise, there is maximal, not minimal, emergence! It is useful to equate
“uncertainty” with entropy here. Further, characterizing H(S|L) as surprise
(see Figure 3.4) supports the present authors’ kind of emergence.

3.3.6 Emergence and surprise

Damper [37]: “Many authors have attempted to explain
emergence in terms of surprise . . . The problem here is
that surprise is in the eye of the beholder.” “John Hol-
land . . . pointed out that von Neumann’s demonstra-
tion of a self-reproducing machine ‘nicely refutes the
use of surprise as part of the definition of emergence.’
‘It’s still a great example of emergence,’ . . . And rather
than feeling ‘cheated’ once we know the details, there
should be ‘. . . no diminution in wonder. . . .”

92 Beverly Gay McCarter and Brian E. White

Turning surprise into wonder is not a bad thing! Surprise is what is inter-
esting, especially that different people will differ on the degree to which
they are surprised. In the authors’ definition emergence can relate to “non-
biological” machines, but is mainly intended to apply to those systems dem-
onstrating biological or adaptive behaviors. Most traditional machines do
not demonstrate emergent properties; while a certain result may be a “sur-
prise” to the observer, the sequence of events leading up to the unexpected
occurrence can be deconstructed and reproduced. With “biological” or adap-
tive systems, emergent behavior cannot be predicted, fully deconstructed, or
necessarily reproduced.

Ronald et al. [49]: “The description of a phenomenon
as emergent is contingent, then, on the existence of
an observer; being a visualization constructed in the
mind of the observer, emergence can be described as
a concept, like beauty or intelligence. Such concepts
are slippery.” “Clearly, the existence of an observer is
a sine qua non for the issue of emergence to arise at
all.” “Our emergence test [see Ronald’s paper] centers
on an observer’s avowed incapacity (amazement) to
reconcile his perception of an experiment in terms of

H(S)

H(S)
0

S = System “specification”
L = System “implementation”
H = Entropy or uncertainty

I(S;L) = Mutual information

Darker region, i.e.,
of the biggest surprises,
is of the greatest interest

H(S|L) = Emergent “surprise”

H(S|L) = H(S) – I(S;L)

Lighter region, i.e.,
greater design success,

is more benign and expected

Figure 3.4 Emergent “surprise” as the conditional entropy of an implemented system.

Chapter three: Emergence of SoS, sociocognitive aspects 93

a global world view with his awareness of the atomic
nature of the elementary interactions.”

The authors agree! These concepts surrounding the inclusion of an observer
are fundamental in highlighting the surprise aspect of emergence on which
the present authors want to focus. So the degree of surprise is important:
As the observer tries to learn more about the emergence phenomena, his/
her surprise may diminish. The more important emergent properties, in the
authors’ opinion, would be those for which surprise persists despite the best
efforts of the observer.* Again, these latter properties are more important
because, with further study, they might provide clues for Black Swan condi-
tions [39].

3.3.7 Emergence in system of systems

Again, consider the problem facing an Organization attempting to man-
age an SoS. Some things can be learned about how such Organizations can
become more successful, or at least remain viable, by examining factors that
may have led to the collapse of such complex systems as human civiliza-
tions. Perhaps there are several parallels to organizations, cf., the (present
authors’) italicized passages in the footnote below.† Thus, some central-
ized management functions appear to be necessary for continued health of

* An example related to the Möbius strip may be illuminating. One can try this at home.
Construct a Möbius strip with tape and an elongated rectangular-shaped sheet of paper.
Then cut the strip down the middle lengthwise. The result is another Möbius strip but
one that is twice as long and half as wide. Then, cut this new Möbius strip again, length-
wise. Now the result is two disjoint but interlocking Möbius strips, each of the same
length as what one started with at the second iteration. How can this be, considering one
started with a Möbius strip in the second case, as in the first, but got a fundamentally
different result in the second case compared to the first?! Perhaps those more versed in
topology have a mathematical or logical explanation but the present authors do not see
it, and remain surprised even after observing the event! Similar things happen when
starting with a paper with two twists instead of one. After the first cutting one obtains
a strip, with two twists that is twice as long and half as wide. After the second cutting
one has two disjoint interlocking strips of the same length with two twists each. Again,
this is mind-blowing!

† “[Societal] Collapse is manifest in such things as: a lower degree of stratification and social
differentiation; less economic and occupational specialization, of individuals, groups,
and territories; less centralized control; that is, less regulation and integration of diverse
economic and political groups by elites; less behavioral control and regimentation; less
investment in the epiphenomena of complexity, those elements that define the concept of
‘civilization’: monumental architecture, artistic and literary achievements, and the like;
less flow of information between individuals, between political and economic groups, and
between a center and its periphery; less sharing, trading, and redistribution of resources; less
overall coordination and organization of individuals and groups; a smaller territory integrated
within a single political unit. Not all collapsing societies, to be sure, will be equally char-
acterized by each item on this list, and the list is by no means complete.” [50, p. 4]

94 Beverly Gay McCarter and Brian E. White

the Organization. The next quote* also suggests a traditional hierarchical
structure to implement intentions of the central controlling body. In the last
two quotes, note the implied desirability of more complexity if one deems a
vibrant civilization as being “good.” Thus, it would seem that those striving
for more advanced SoS should embrace increased complexity. For those afraid
of nuanced change this is something that may be viewed as counterintuitive.
As a result, there may be a quasi life-cycle phenomenon at play here with a
continual ebb and flow of an Organization’s health between chaos and stabil-
ity.† Because the organizations managing the systems of the SoS are assumed
to be independent, the challenge of the Organization is to create policies,
incentives and reward structures, or other conditions that influence the envi-
ronment in which the component systems are being developed and operated
in positive ways. This would help to achieve good things for the SoS, even
when the separate system organizations and their managers pursue their
own self-interests. Hence, one could say that the main job of the Organiza-
tion is to “engineer the environment” for the benefit of all involved.

Clearly, too much information flow among the organizations of the SoS
can cause friction and collapse of an SoS [51], particularly information from
uninformed or disruptive sources that can cause confusion among recipi-
ents.‡ An effective Organization needs to have the appropriate amounts and
types of interorganizational communication.

Organizations can be both centralized and decentralized; complexity
theory can help explain this paradoxical situation. The consideration of
multiple “scales” or views may be helpful here. For example, the organiza-
tion and its suborganizations and their intercommunications can be viewed
at one (hierarchical) scale of abstraction. On the other hand much of the
communications among individuals can be viewed at another, more ad hoc

* “In a complex society that has collapsed, it would thus appear, the overarching structure
that provides support services to the population loses capability or disappears entirely.
No longer can the populace rely upon external defense and internal order, maintenance
of public works, or delivery of food and material goods. . . . Remaining population must
become locally self-sufficient . . .” “Collapse is a process of decline in complexity.” [50,
pp. 21, 31]

† “Four concepts lead to understanding collapse, the first three of which are the under-
pinnings of the fourth. These are: 1. human societies are problem-solving organiza-
tions; 2. sociopolitical systems require energy for their maintenance; 3. increased
complexity carries with it increased cost per capita; and 4. investment in sociopolitical
complexity as a problem-solving response often reaches a point of declining marginal
returns.” [50, p. 194]

‡ “Lewis [18] uses communication policy to give an organizational example of how com-
plexity theory can be applied. He notes that some have suggested that the purpose of an
organization is to reduce and block communication so things can get done rather than
talked about. An organization that has no rules concerning communication will have
‘total chaos and breakdown,’ because every worker will be overwhelmed with memos,
meetings, and telephone calls. Yet placing restrictions on communications (such as
between departments) provides control and stability, yet ‘little learning or change.’“ [9]

Chapter three: Emergence of SoS, sociocognitive aspects 95

(distributed), scale. The authors pose the (preferred) idea of a hybrid organi-
zation with both hierarchical (derived from a central control mentality) and
distributed* or decentralized functions that are not limited to just distinct
types of communication.

Malone states that decentralization is necessary in order to make an orga-
nization more agile and flexible in an increasingly competitive and dynamic
world.† For example, the Department of Defense (DoD), a principal enterprise
concerned with SoSs, with a tradition of hierarchical command and control
but distributed execution (and adaptation) responsibility,‡ is no exception.

Malone further expounds on the power of decentralization and individual
freedom within organizations. Because of the relatively lower costs of com-
munication compared to the past, it is possible to retain the advantages of a
centralized but loose hierarchy while empowering staff. Then staff are free to
innovate and achieve a variety of goals, many of which can be based on per-
sonal values as well as a corporate or directorate vision. However, consider
the hypothesis: Complete decentralization will not work; it will cause disin-
tegration. Recall the discussion of collapses of civilizations above. A hybrid
organization with a management hierarchy to maintain “loose-coupled” com-
munication among organizational subelements is seen as a minimum deter-
rent. The parallels to the Organizations of interest here are rather obvious.

* “It is no longer considered strange to read in the literature about organizational effective-
ness as being described by variables that are either contradictory, or even paradoxical.
Cameron writes about this explicitly: ‘To be effective, an organization must possess attri-
butes that are simultaneously contradictory, even mutually exclusive’ [52, p. 545]. Using
this framework, organizations can be both centralized and decentralized, both general
and specialist, have both stability and adaptability, and diversified while “sticking to
their knitting.” Complexity theory, particularly when used to explain the survivability
and adaptability of biological systems, makes use of paradoxical explanations, many
of which appear to have applicability to describing all complex adaptive systems, such
as . . . organizations. . . . Governing an organization is therefore an art, . . .” [9]

† “. . . by relentlessly reducing the costs of communications, new information technolo-
gies are taking us across a threshold into a place where dramatically more decentral-
ized ways of organizing work become at once possible and desirable. . . . We are, it
seems, on the verge of a new world of work in which many organizations will no longer
have a center at all—or, more precisely, in which they’ll have almost as many ‘centers’
as they have people.” “Now, we are in the early stages of another revolution—a revolu-
tion in business—that may ultimately be as profound as the democratic revolution in
government.” “For the first time in history, technologies allow us to gain the economic
benefits of large organizations, like economies of scale and knowledge, without giving
up the human benefits of small ones, like freedom, creativity, motivation, and flexibil-
ity.” “The most extreme kind of business freedom occurs in markets because, in this
kind of organization, no one is bound by a decision to which he or she doesn’t agree.”
[53, pp. ix, 4, 7]

‡ This is embedded in U.S. air combat tactics and the U.S. military’s reliance on the initia-
tive of noncommissioned officers, both of which differentiated U.S. Military and Soviet
styles.

96 Beverly Gay McCarter and Brian E. White

Perhaps one need not fear complete decentralization, especially in the
context of SoSs. This may be a rare event, because it could be that the hierar-
chical management structure is self-perpetuating. Many of those in positions
of power within an SoS hierarchy got there by adopting the command-and-
control (alpha male) mentality of their bosses. Being so successful, why
should they be motivated to change this culture? They may have very little
personal vested interest in nurturing, viz., coordinating and cultivating,
significant degrees of decentralization! Such managers have experienced
success with certain types of behavior, thus, creating “instinctive” patterns
of response. It is very hard to break behavior thus engrained in physically
created neuronal pathways in the brain. One has to consciously, consistently
create new pathways and cause the previous ones to disintegrate through
atrophy to actually change the behavior and, thus, one’s mental model or
view of reality.*

Caveat: with such decentralization comes increased conflict—“turf
battles.” Current modeling research demonstrates that this can cause less
integration (people preferring to be with others like themselves) and more
“bumping” of group boundaries, thus creating more conflict e.g., factional
fighting within Iraq, and initially after the fall of the Soviet Union, among
former member republics. Prior to that strong centralized authority “forced”
the various groups to cooperate. One should recognize that with an SoS,
however, this decentralization can be viewed in reverse. More typically, the
systems comprising the SoS and their respective organizations exist prior
to the Organization itself. Thus, as opposed to taking an Organization and
decentralizing it, the SoS is more accurately the result of a process of trying
to aggregate the benefits of the various systems into an SoS. The Organiza-
tion is then decentralized by default as a fait accompli. But as a decentralized
operation there can still be problems.

In some ways the decentralized system organizations of an SoS can be
thought of as a rhizome.† This rhizome paradigm is powerful, but we still

* “When people are making their own decisions, for instance, rather than just following
orders, they often work harder and show more dedication and more creativity.” “We need
to shift our thinking from command-and-control to coordinate-and-cultivate. . . . rigid
standards in one part of a business system can sometimes—paradoxically—allow much
more flexibility and freedom in other parts of the same system.” “. . . workers are being
rewarded not for efficiently carrying out orders but for figuring out what needs to be
done and then doing it.” “When they have more freedom, their work becomes more
interesting and enjoyable, and they’re better able to juggle the various demands that life
places on them.” “Why can’t power, ownership, and initiative be distributed throughout
a whole market, rather than being imposed from the top of a hierarchy?” “Decentralize
when the motivation and creativity of many people is critical.” “What percentage of the
intelligence and creativity of the people in your own organization do you think your
organization actually uses?” [53, pp. 10–12, 35, 76, 121, 153]

† “In order to resolve the deficiencies fundamental to the structure of hierarchy, we
must, by definition, abandon hierarchy as an organizing principle. We must confront
hierarchy with its opposite: . . . Rhizome acts as a web-like structure of connected but

Chapter three: Emergence of SoS, sociocognitive aspects 97

need some organizational functions to be handled in a hierarchical fashion
(i.e., a hybrid organization that is a mix of hierarchy and decentralization
might work well). One needs to ask continually what combinations of the
respective roles of hierarchy and decentralization might work the best from
a systems engineering point of view within the context of an Organization
and the comprised system organizations.

One function of the hierarchical portion of an organization (i.e., mainly
the Organization in this context) would seem to be to continually try to track
and shape the decentralized portion (i.e., the systems organizations)* while
ensuring that the overall vision, mission, and policies of the Organization
are being followed. This is probably much easier said than done.

The potential power of the systems organizations in functioning as a rhi-
zome, to help the Organization, is quite promising.† This suggests that the
communications functions of the hierarchical and decentralized portions of
a hybrid organization should be distinct. A good question to ponder: How

independent nodes, borrowing its name from the structures of plants such as bamboo
and other grasses. . . . Each node . . . stands autonomous from the larger structure, but
the nodes work together in a larger network that extends benefits to the node without
creating dependence. The critical element of a world that focuses power at the level
of the individual, . . . while providing the flexibility and potential to achieve greater
goals, remains the small, connected and relatively self-sufficient node of this rhizome
structure. In human terms, such a node represents an economic and a cultural unit at
the size preferred by [us]: the household and the tribe. Functionally self-sufficient but
not isolated, cooperating but not controlled, the rhizome economy, combined with a
self-awareness of control structures, provides the real-world foundation of stability
and freedom.” [54]

* “Centralization and stratification produce ever-greater losses in efficiency due to the
increased cost of distribution, coordination and communication. Hierarchy has incred-
ible strength, but the accompanying inflexibility and top-heaviness can make it brittle
and unstable. The networked, rhizome structure not only facilitates greater individ-
ual freedom, it also creates a more flexible and resilient structure for human ecology.
The resiliency of rhizome may prove the deciding factor in our long-term survival as
humanity encounters a host of potential threats. In the face of super-viruses, climate-
change and overpopulation, the richer, more complex, more rhizomatic ecosystem has
historically demonstrated greater survivability.” [54]

† “With a foundation of self-sufficiency established, a node can take advantage of a sec-
ond strength of the rhizome pattern: network. Loose network connections, such as
those in rhizome structures, actually demonstrate far more efficiency at information
transfer and processing than the close, authoritarian connections of hierarchies, accord-
ing to complexity theorist Mark Buchanan [Nexus: Small Worlds and the Groundbreaking
Theory of Networks, Mark Buchanan]. The more intense, closely held connections within
hierarchy prevent information from quickly spreading among large or diverse groups.
The weaker, more distributed connections of a network can more quickly disseminate
information to a much broader audience. . . .” [54] There are interesting parallels here
with point-to-point networks. Fixed structure can be more efficient/effective within the
constraints of the specific conditions for which it was designed. But it is not resilient/
adaptable.

98 Beverly Gay McCarter and Brian E. White

would these functions be partitioned between the Organization and the sys-
tems organizations?

Unfortunately, “. . . most people are still more comfortable thinking about
organizations in fixed, mechanical terms rather than in adaptive, decentral-
ized terms.” [55, p. 29] This is a holdover from the Industrial Revolution of
over a century ago. We are now coming full circle in understanding the cen-
trality of biological systems in understanding how systems work. The clas-
sical hierarchical management structure probably is well ingrained as the
correct construct in the thinking of most managers. Do we have to wait for a
new generation of leaders for this mindset to change? Hopefully, no!

Progress in an SoS can be related to a process of “variation and selection”*
(see Figure 3.1) to continually try to find the right balance as one progresses
toward more capability (a.k.a. complexity), e.g., a shaped and enhanced com-
bination of more innovation and integration. Emergence, e.g., “surprises”
coming from the interaction of parts of the whole, and the interaction of the
whole with its environment, is responsible for this. One cannot predict what
these interactions will produce.

Decentralization of SoS organizations implies that some groupings of
individuals will form and disband dynamically in attempts to, among other
things, manage an SoS. This presents a host of sociological challenges.† One
implication of the human nature variables with regards to the more creative
thinking members of a team is likely to be possible conflict within the team.
“Outside-the-box” thinking often can engender fear and antagonism from
other team members, resulting in alienation of the more creative members
of the team and general disruption of the group effort, as mentioned earlier
regarding rigidity of thought.

* “Harnessing complexity requires taking advantage of variety rather than trying to
ignore or eliminate it.” “In complex systems, it is difficult to determine what should be
rewarded or which choice is appropriate. . . . In the short run we are not likely to have a
direct approach that ‘gets it completely right.’” [55, pp. 130, 137, 138]

† “Abstract: The five management concepts under the new decentralization paradigm
present several organizational problems. These concepts are founded on the idea of the
inherent goodness of human nature, which is unrealistic and impractical. Despite this
basic flaw, the new decentralization paradigm is expected to govern the restructuring
of many businesses.” “The five concepts are: 1) ‘radical’ restructuring; 2) customer and
process orientation; fractal and modular factories; 4) virtual corporation; and 5) atom-
ized organization.” “. . . their design is vague, contradictory and nonoperational. . . . lack-
ing a theoretical foundation . . . untested hypotheses. . . . [from HRM perspective] barriers
crop up which are hard or impossible to surmount and which are, above all, a result of
the limited knowledge and abilities of the necessary personnel available and an all too
idealistic notion of human nature underlying these new concepts.” [56]

Chapter three: Emergence of SoS, sociocognitive aspects 99

Clearly, decentralization presents administrative challenges to SoS orga-
nizations, as well.* Even in nonprofit organizations, certain elements are
appropriate for the hierarchical portion of the management structure (e.g.,
formulation and communication of organizational vision, overall mission,
and general strategies for attaining same; funding/salary administration
and capital budget allocations).

Less central control by the Organization comes with a greater depen-
dency on organizational individuals to work well within small groups,
which, in turn, are expected to make independent decisions that move the
systems organizations toward collectively stated goals. It is hoped that the
individuals will be able to set aside some personal motivations and com-
pensate for limiting personality characteristics, and act cooperatively with
others within their own group and with other groups with whom they
interact. This requires that they be able to embrace uncertainty and ambi-
guity. Also, this presents a challenge within the DoD and other federal
agencies. For example, there is a strong traditional tendency to treat the
control of information as a source of power and institutional or political
advantage. Thus, despite high-managerial-level mandates to share infor-
mation across institutional boundaries to achieve enterprise goals,† the
reality of residual cultural bias at the working level prevents this from hap-
pening in meaningful ways.

However, getting people to actually set aside their personal view of their
reality and take on alternate perspectives of others has been shown often to
be a very difficult task.‡ How well one is able to understand or process vary-
ing types of information can determine the success of accepting or taking on
multiple perspectives.

* “. . . it is likely that a growing need for coordination and an increase in transaction costs
will result from a decentralization of decision making and enterprise functions.” A
“plausible structural element” used to characterize the paradigm: “. . . (12) complemen-
tary central supervision of the decentralized units—at least at the strategic level; cen-
tral, profit-oriented supervision . . . by means of financial control.” [56]

† Wolfowitz, Paul, 2 December 2004, “Data Sharing in a Net-Centric Department of
Defense,” Department of Defense, ASD(NII)/DoD CIO, Number 8320.2

‡ “Breaking down our associative barriers is the first challenge we face . . . But how do we
do it? . . . In essence, . . . people succeeded at breaking down . . . barriers because they did
one or more of the following things: 1) Exposed themselves to a range of cultures; 2)
Learned differently; 3) Reversed their assumptions; and 4) Took on multiple perspec-
tives.” [57, p. 45]

100 Beverly Gay McCarter and Brian E. White

But while it will help innovation to add diversity,* this will also increase
conflict within the group. How does one compensate for this? This highlights
the particular challenge for small groups to truly embrace those that are dif-
ferent, especially those who offer relatively radical ideas.†

In complex (enterprise) environments like that of an SoS, it is better to
have an opportunity exploration mindset as opposed to a risk mitigation
mindset. Usually, money is not the best, most effective, long-term reward or
motivation for individuals, as stated in other sources. But monetary compen-
sation should be at a comfortable level for the individual, and outstanding
performance should be recognized in a way that is personally meaningful
for the individual concerned. Whether it is through external validation or
through the challenge of the work itself, understanding individually tailored
motivations is essential. Another problem can be jealousy within the group.
Thus, one also needs to consider how jealousy can be mitigated to an accept-
able level so that it does not jeopardize the group working as a team.

Thus, it would seem that group performance can be improved, particu-
larly in utilizing the more creative thinkers in the organization or group,
by training everyone in the three tenets of a learning organization culture,
viz., integration, collaboration, and proactiveness.‡ Such training might be

* “Working with a diverse group of people, then, is a great way to increase creativity.”
“What is surprising . . . is not that people are attracted to people who are similar; this
is something we know from personal experience. What is surprising is how predict-
able this effect is. . . .” so much so “that it can be expressed through a regression equa-
tion. The similar-attraction effect can have a devastating impact on our efforts to create
diverse teams.” “If you are thinking about recruiting a candidate because ‘I like her’ or
‘He’s just like one of us,’ these might actually be reasons not to hire the person, assum-
ing the job or team requires creativity.” [57, pp. 80–82]

† “So how do you reward failure? . . . 1) Make sure people are aware that failure to execute
ideas is the greatest failure, and that it will be punished. 2) Make sure everyone learns
from past failures; do not reward the same mistakes over and over again. 3) If people
show low failure rates, be suspicious. Maybe they are not taking enough risks, or maybe
they are hiding their mistakes, rather than allowing others in the organization to learn
from them. 4) Hire people who have had intelligent failures and let others in the organi-
zation know that’s one reason they were hired.” “Explicit rewards, then, can be an effec-
tive way to kill off our creativity. . . . If intrinsic motivation is high, if we are passionate
about what we are doing, creativity will flow. External expectations and rewards can
kill intrinsic motivation and this kill creativity. . . . Stephen King puts it this way: ‘Money
is great stuff to have, but when it comes to the act of creation, the best thing is not to
think of money too much. It constipates the whole process.’” [57, pp. 129, 138]

‡ “Building learning organizations requires personal transformations or basic shifts
in how we think and interact. As W. Edwards Deming says, nothing happens without
‘personal transformation.’ And the only safe space to allow for this transformation is a
learning community. But at the heart of any serious effort to alter how we operate lies a
concern with three dysfunctions of our culture: fragmentation, competition, and reac-
tiveness. . . . [Fragmentation] The walls that exist in the physical world are reflections of
our mental walls. . . . [Competition] Fascinated with competition, we often find ourselves
competing with the very people with whom we need to collaborate. . . . Our overemphasis
on competition makes looking good more important than being good. The fear of not

Chapter three: Emergence of SoS, sociocognitive aspects 101

instigated by the Organization but include key representatives of the sys-
tem organizations. Initial success would depend on some level of up-front
trust, but if properly implemented, interorganizational trust would tend to
increase, raising the prospects of ultimate success in creating a cadre of high
performers within an SoS team.

Trust needs bonding, particularly among individuals from different
organizational groups.* Trust needs personal contact outside of meetings to
develop.† Trust is a huge topic that cannot be treated adequately here; more
can be found in [10] and many papers in the trust literature.

In regards to the topic of SoS emergence, any characteristic or property of
an SoS that is not observed in any proper subset of the systems comprising
the SoS, and only such characteristics, can be called emergent. Everyone cited
above would seem to agree on this definition of SoS emergence.

Such an emergent (contrary to the authors’ preferred definition of emer-
gence, of course) property is probably either there “by design” or “implied”
by the intentional aggregation of some subset of systems in an SoS. Recall
that, by definition, an SoS achieves some purpose that none of the subsets
of the SoS can achieve; that is why the SoS was assembled in the first place.
This is fine and good but it is rather boring! The fascinating thing about
complex systems in general and an SoS in particular is the unexpected, even
surprising, emergent properties. One had better pay particular attention to
those or risk paying dearly for the promises offered by the SoS opportunities
if something goes very wrong. This is why the authors define emergence to
be unexpected and focus on the surprises. In proofing the final version of
this chapter, the authors learned of a paper on emergence offering a similar
message [60].

looking good is one of the greatest enemies of learning. To learn, we need to acknowledge
that there is something we don’t know, and to perform activities that we’re not good at.
[Reactiveness] We have grown accustomed to changing only in reaction to outside forces,
yet the well-spring of real learning is aspiration, imagination, and experimentation.” [58]

* “Trust needs bonding. Self-contained units responsible for delivering specified results
are the necessary building blocks of an organization based on trust, but long-lasting
groups of trusties can create their own problems, those of organizations within the orga-
nization. For the whole to work, the goals of the smaller units have to gel with the goals of
the whole. Paradoxically; the more virtual the organization, the more its people need to
meet in person. . . . Trust is not and never can be an impersonal commodity.” [59, p. 46]

† “Trust needs touch. . . . A shared commitment still requires personal contact to make it
real. . . . The meetings, however, are different. They are more about process than task,
more concerned that people get to know each other than that they deliver. Videoconfer-
ences are more task focused, but they are easier and more productive if the individuals
know each other as people, not just as images on the screen.” [59, p. 46] Interestingly,
some research suggests this has changed for the next generation(s)—the “digital natives”
who are growing up with web-based technologies and mindsets, e.g., akin to using
Second Life avatars (http://en.wikipedia.org/wiki/Second_Life).

102 Beverly Gay McCarter and Brian E. White

3.4 Conclusion
Each of us sees a distinct perception of reality. New perceptions can arise
from changes in the components of a new interpretation of scale: {view} =
{scope, granularity, mindset, timeframe}. To improve the practice of systems
engineering, continual surprise is the most important aspect of emergence
that results from multiview analysis, especially in SoS environments.

Many problems concerning organization constructs, leadership roles,
decentralization, group dynamics, individual behavior, and trust are raised.
Although not all these issues are new, the authors feel they are not receiv-
ing enough attention in the context of engineering of an SoS. It seems clear
that complexity theory and/or systems science is not only applicable but per-
haps critical in solving some of these problems. Several areas of research
that could greatly improve progress toward the goal of the effective/effi-
cient development and sharing of information in such environments are
suggested in [10].* The results of such research also could positively impact
knowledge management and the return on investment in systems engineer-
ing in general.

References
 1. White, B. E. 2006. Fostering intra-organizational communication of enterprise

systems engineering practices. National Defense Industrial Association, 9th
Annual Systems Engineering Conference, San Diego CA, 23–26 October 2006.

 2. White, B. E. 2007. On Interpreting scale (or view) and emergence in complex
systems engineering. 1st Annual IEEE Systems Conference, Honolulu, HI, 9–12
April 2007.

 3. Isaacson, W. 2007. Einstein—His Life and Universe. Simon and Schuster, New York.
 4. Broks, P. 2006. The big questions: what is consciousness? NewScientist.com

news service, from issue 2578 of New Scientist 18, November 2006, pp. 56–61.
 5. Ryan, A. personal communication, 15 September 2006.
 6. Kuras, M. L. 2007. Complex-System Engineering, Symposium on Complex Sys-

tems Engineering. RAND Corporation, Santa Monica, CA.

* Some of these are repeated here:
 (1) What are the most effective/efficient combinations of the respective roles of hier-

archy and decentralization in a hybrid organization? (2) Assuming the communications
functions of the hierarchical and decentralized portions of a hybrid organization are
distinct, how should these functions be partitioned? (8) How can neuroanatomy/evo-
lutionary biology research be used in conjunction with research about mirror neurons
to develop new training programs that get people to “break” rigid constructs of reality
and their “instinctive” reactions that may no longer be appropriate? (10) What are some
good techniques for balancing the strength of diversity with the potential for conflict
within small groups? (11) How can jealousy within a group be mitigated to an accept-
able level so that it does not jeopardize the group working as a team? (17) To what extent
might individual behavior and small group dynamics scale to the larger organization
and/or an encompassing enterprise? (18) How might one motivate individuals or shape
their behavior, leveraging common good traits, to approach organizational or institu-
tional goals?

Chapter three: Emergence of SoS, sociocognitive aspects 103

 7. Kuras M. L. and B. E. White. 2005. Engineering enterprises using complex-sys-
tem engineering. INCOSE Symposium, Rochester, NY, 10–14 July 2005.

 8. Plsek, P. E., C. Lindberg, and B. Zimmerman. 1997. Some Emerging Principles for
Managing Complex Adaptive Systems. 23 September, 1997. http://www.directed-
creativity.com/pages/ComplexityWP.html.

 9. Grobman, G. M. 2005. Complexity theory: a new way to look at organizational
change. Public Administration Quarterly 29:350–382.

 10. McCarter, B. G. and B. E. White. 2007. Collaboration/cooperation in sharing and
utilizing net-centric information, conference on systems engineering research
(CSER). Stevens Institute of Technology, Hoboken, NJ, 14–16 March 2007.

 11. DeRosa, J. K., G. Rebovich, and R. S. Swarz. 2006. An enterprise systems engi-
neering model. INCOSE Symposium, Orlando, FL, 9–16 July 2006.

 12. Gharajedaghi, J. 2006. Systems Thinking, Second Edition: Managing Chaos and
Complexity: A Platform for Designing Business Architecture, 2nd Edition. Elsevier,
London. http://www.elsevier.com/wps/find/bookdescription.authors/706822/
description#description.

 13. Ludeman, K. and E. Erlandson, 2004. Coaching the alpha male. Harvard Busi-
ness Review, May, 2004, p. 58.

 14. White, B. E. 2006. Enterprise opportunity and risk. INCOSE Symposium,
Orlando, FL, 9–16 July 2006.

 15. Ramachandran, V. S. and L. M. Oberman. 2006. Broken mirrors: a theory of
autism—studies of the mirror neuron system may reveal clues to the causes of
autism and help researchers develop new ways to diagnose and treat the dis-
order. Scientific American, Special Section: Neuroscience, November 2006, pp.
63–69, www.sciam.com.

 16. Rizzolatti, G., L. Fogassi, and V. Gallese. 2006. Mirrors in the mind: A special
class of brain cells reflects the outside world, revealing a new avenue for human
understanding, connecting and learning. Scientific American, Special Section:
Neuroscience, November 2006, pp. 54–61, www.sciam.com.

 17. Ludeman, K. and E. Erlandson. 2004. Coaching the alpha male, Harvard Busi-
ness Review, May, 2004, p. 58.

 18. Lewis, R. 1994. From chaos to complexity: implications for organizations. Exec-
utive Development 7:16–17.

 19. Mackenzie, D. 2005. End of the enlightenment. NewScientist.com news service,
October 2005.

 20. Damasio, A. 1994. Descarte’s Error—Emotion, Reasons, and The Human Brain. Pen-
guin Books, Penguin Group, New York.

 21. Society for Neuroscience. 2007. Adult Neurogenesis, brain brief-
ings. Society for Neuroscience, June 2007 http://www.sfn.org/index.
cfm?pagename=brainBriefings_adult_neurogenesis&print=on.

 22. Gould, E. 2007. How widespread is adult neurogenesis in mammals? Nature
Reviews Neuroscience 8:481–488.

 23. Geddes, L. 2007. Adult-formed brain cells important for memory. NewScientist.
com news service, 23 May 2007.

 24. Geddes, L. 2007. Magnets may make the brain grow stronger. NewScientist.
com news service, 24 May 2007.

 25. Ryan, A. J. 2006. Emergence is coupled to scope, not level. Nonlinear Sciences,
abstract, http://arxiv.org/abs/nlin.AO/0609011.

 26. Sheard, S. A. personal communication, 2006.
 27. Koch, C. and G. Laurent. 1999. Complexity and the nervous system. Science

284:96–98, http://www.sciencemag.org.

104 Beverly Gay McCarter and Brian E. White

 28. Johnson, S. 2001. Emergence—The Connected Lives of Ants, Brains, Cities, and Soft-
ware, Scribner, New York, p. 127.

 29. Phillips, H. 2006. Instant expert: the human brain. NewScientist.com news service, 4
September, 2006, http://www.newscientist.com/article.ns?id=dn9969&print=true.

 30. Johnson, C. W. 2005. What are Emergent Properties and How Do They Affect
the Engineering of Complex Systems? http://www.dcs.gla.ac.uk/~johnson/
papers/emergence.pdf.

 31. Davies, P. 2005. Higher laws and the mind-boggling complexity of life. New
Scientist Print Edition, http://www.newscientist.com/article.ns?id=mg1852489
1.000&print=true.

 32. Abbott, R. J. 2006. If a tree casts a shadow is it telling the time? Department of
Computer Science, California State University, Los Angeles, CA, 14 July 2006.

 33. Kuras, M. L. personal communication, 11 August 2006.
 34. Snyder, A. 1999. Game, mindset and match. Number 10,947, The Weekend Austra-

lian, 4–5 December 1999.
 35. Clark, B. 2001.Growing Up Gifted: Developing the Potential of Children at Home and

at School, 6th Edition. Prentice Hall, New York.
 36. Gladwell, M. 2005. Blink: The Power of Thinking Without Thinking. Little, Brown

and Company, Time Warner Book Group, New York.
 37. Damper, R. I. 2000. Emergence and levels of abstraction. Editorial for the Spe-

cial Issue on ‘Emergent Properties of Complex Systems,’ International Journal of
Systems Science 31(7) 2000:811–818.

 38. Abbott, R. J. 2005. Emergence explained: getting epiphenomena to do real work.
Department of Computer Science, California State University, Los Angeles, CA,
12 October 2005.

 39. Taleb, N. N. 2007. The Black Swan—Impact of the HIGHLY IMPROBABLE, Ran-
dom House, New York.

 40. Cohen, M. 1999. Commentary on the organizational science special issue on
complexity. Organization Science10:373–376.

 41. Fromm, J. 2005. Types and forms of emergence. Nonlinear Sciences, abstract,
nlin.AO/0506028, 13 June 2005.

 42. Bar-Yam, Y. 2003. Emergence, Concepts in Complex Systems. http://necsi.org/
guide/concepts/emergence.html.

 43. Buchanan, M. 2007. Predicting change, not a moment too soon, New Scientist,
11-17 August 2007, p. 9.

 44. Ryan, A. and D. O. Norman, personal communications, 21 September 2006.
 45. Mogul, J. C. 2005. Emergent (mis)behavior vs. complex software systems, HPL-

2006-2, HP Laboratories, Palo Alto, CA, 22 December 2005.
 46. Boardman, J. and B. Sauser. 2007. System of Systems—the meaning of of. Sym-

posium on Complex Systems Engineering, RAND Corporation, Santa Monica,
CA, 11–12 January 2007.

 47. Abbott, R. J. 2007. Emergence and systems engineering: putting complex sys-
tems to work. Symposium on Complex Systems Engineering, RAND Corpora-
tion, Santa Monica, CA, 11–12 January 2007.

 48. Weeks, A., S. Stepney, and F. Polack. 2007. Neutral emergence: a proposal. Sym-
posium on Complex Systems Engineering, RAND Corporation, Santa Monica,
CA, 11–12 January 2007.

 49. Ronald, E. M. A. 1999. Design, observation, surprise!—a test of emergence. Arti-
ficial Life 5:225–239.

 50. Tainter, J. A. 1988. The Collapse of Complex Societies. Cambridge University
Press, Cambridge.

Chapter three: Emergence of SoS, sociocognitive aspects 105

 51. De Landa, M. 1991. War in the Age of Intelligent Machines. Swerve Editions,
New York.

 52. Cameron, K. 1986. Effectiveness as paradox: consensus and conflict in concep-
tions of organizational effectiveness. Management Science 32:539–553.

 53. Malone, T. W. 2004. The Future of Work—How the New Order of Business Will
Shape Your Organization, Your Management Style, and Your Life. Harvard Business
School Press, Boston, MA.

 54. Vail, J. 1964. A Theory of Power, Chapter 9: Forward, to Rhizome. iUniverse, Inc.,
New York, http://www.jeffvail.net/2004/10/theory-of-power-chapter-9.html.

 55. Axelrod, R. and M. D. Cohen. 2000. Harnessing Complexity: Organizational Impli-
cations of a Scientific Frontier. Basic Books, New York.

 56. Drumm, H. J. 1995. The paradigm of a new decentralization: its implications for
organization and HRM. Employee Relations 17(8):29–46.

 57. Johansson, F. 2004. The Medici Effect – Breakthrough Insights at the Intersection of
Ideas, Concepts, and Cultures. Harvard Business School Press, Boston, MA, 2004.

 58. Senge, P. M. 1999. Personal transformation. Society for Organizational Learn-
ing, http://www.solonline.org/res/kr/transform.html.

 59. Handy, C. 1995. Trust and the virtual organization: how do you manage people
whom you do not see? Harvard Business Review, May–June 1995.

 60. McConnell, G. R. 2000. Emergence: A challenge for the systematic. INCOSE
Symposium, Minneapolis, 16–20 July 2000.

107

chapter four

A system-of-systems
simulation framework
and its applications
Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

Contents

4.1 Introduction.. 107
4.2 System of systems .. 108
4.3 System-of-systems simulation framework ... 115

4.3.1 DEVS modeling and simulation .. 115
4.3.2 XML and DEVS .. 118

4.4 SoS simulation framework examples ... 119
4.4.1 Case study 1: Data aggregation simulation 119

4.4.1.1 DEVS-XML format ... 119
4.4.1.2 Programming environment ... 120
4.4.1.3 Simulation results .. 121

4.4.2 Case study 2: a robust threat detection system simulation 123
4.4.2.1 XML format .. 123
4.4.2.2 Simulation setup .. 124
4.4.2.3 Robust threat detection simulation 126

4.5 Conclusion .. 130
References .. 130

4.1 Introduction
There has been a growing recognition that significant changes need to be
made in government agencies and industries, especially in the aerospace and
defense areas [1,2,3]. Today, major aerospace and defense manufacturers such
as Boeing, Lockheed-Martin, Northrop-Grumman, Raytheon, and BAE Sys-
tems include some version of “large-scale systems integration” as a key part of
their business strategies [4]. In some cases, these companies have even estab-
lished entire business units dedicated to systems integration activities [1].

108 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

In parallel, there is a growing interest in new system-of-systems (SoS) con-
cepts and strategies. The performance and functioning of groups of hetero-
geneous systems have become the focus of various applications including
military, security, aerospace, and disaster management systems [5,6]. There
is an increasing interest in achieving synergy between these independent
systems to achieve the desired overall system performance [7]. In the litera-
ture, researchers have addressed the issues of coordination and interoper-
ability in an SoS [4,8,9]. In order to study SoS characteristics and parameters,
one needs to have realistic simulation frameworks properly designed for sys-
tem-of-systems architecture. There are some attempts to develop simulation
frameworks for multiagent systems using discrete event simulation tools
[10–16]. In these research efforts, the major focus is given to discrete event
simulation (DEVS) architecture with JAVA. In [10,11], DEVS modeling is pre-
sented and discussed in detail. In [14,16], DEVS is combined with service-
oriented architecture (SOA) together to create the DEVS/SOA architecture.
In [16], DEVS state machine approach is introduced. Finally, DEVS Modeling
Language (DEVSML) is developed by using XML-based JAVAL in order to
simulate systems in a net-centric way with relative ease [14].

Based on DEVS and JAVA, a discrete event XML-based SoS simulation frame-
work was recently introduced by the authors in [4,17]. In this chapter, we will
extend this SoS simulation framework by designing an SoS problem with het-
erogeneous autonomous systems for threat detection and data aggregation.

4.2 System of systems
The concept of SoS is essential to more effectively implement and analyze
large, complex, independent, and heterogeneous systems working (or made
to work) cooperatively [4,7,18]. The main thrust behind the desire to view
the systems as an SoS is to obtain higher capabilities and performance than
that would be possible with a traditional system view. The SoS concept pres-
ents a high-level viewpoint and explains the interactions between each of
the independent systems. However, the SoS concept is still at its developing
stages [19–22].

Systems of systems are super systems comprised of other elements which
themselves are independent complex operational systems and interact among
themselves to achieve a common goal [4]. Each element of an SoS achieves
well-substantiated goals even if they are detached from the rest of the SoS.
For example a Boeing 747 airplane, as an element of an SoS, is not an SoS, but
an airport is an SoS, or a rover on Mars is not an SoS, but a robotic colony (or
a robotic swarm) exploring the red planet is an SoS [4]. Associated with SoS,
there are numerous problems and open-ended issues which need a great
deal of fundamental advances in theory and verifications. In fact, there is
not even a universal definition among system engineering community even
though there is a serious attempt to define SoS and create its standards.

Chapter four: A system-of-systems simulation framework and its applications 109

Based on the literature survey on system of systems, there are several
system of systems definitions [4,23–29]. All of the definitions of SoS have
their own merits, depending on their application and domain. However, we
will list the more common definitions (with primary focus and application
domain) as reported in the literature:

Definition 1: In [24], systems of systems exist when there is a pres-
ence of a majority of the following five characteristics: operational
and managerial independence, geographic distribution, emergent
behavior, and evolutionary development. Primary focus: Evolution-
ary acquisition of complex adaptive systems. Application: Military.

Definition 2: In [23,25], systems of systems are large-scale concurrent
and distributed systems that are comprised of complex systems. Pri-
mary focus: Information systems. Application: Private Enterprise.

Definition 3: In [26], enterprise systems of systems engineering (SoSE)
is focused on coupling traditional systems engineering activities
with enterprise activities of strategic planning and investment anal-
ysis. Primary focus: Information intensive systems. Application: Pri-
vate Enterprise.

Definition 4: In [27], system-of-systems integration is a method to pursue
development, integration, interoperability, and optimization of systems
to enhance performance in future battlefield scenarios. Primary focus:
Information intensive systems integration. Application: Military.

Definition 5: In [28], SoSE involves the integration of systems into sys-
tems of systems that ultimately contribute to evolution of the social
infrastructure. Primary focus: Education of engineers to appreciate
systems and interaction of systems. Application: Education.

Definition 6: In [29], in relation to joint war-fighting, system of systems
is concerned with interoperability and synergism of Command,
Control, Computers, Communications, and Information (C4I) and
Intelligence, Surveillance, and Reconnaissance (ISR) Systems. Pri-
mary focus: Information superiority. Application: Military.

During the course of defining SoS, one may want to ask the following ques-
tions: How does an SoS differ from large-scale systems (LSS), multiagent sys-
tems (MAS) like system of robotic swarms, unmanned aerial vehicle (UAV)
swarm, etc.? LSS is defined [30,31] as a system which can be decomposed into
subsystems (leading to hierarchical control) or its output information can be
distributed (leading to decentralized control). Within these definitions a LSS
is not an SoS, since the “systems” of a LSS as an SoS cannot operate indepen-
dently like a robotic colony or an airport. In other words, a LSS does not cre-
ate capability beyond the sum of individual capabilities of each system [32].

The MAS, on the other hand, are special cases of SoS that have a fur-
ther unique property aside from having an emergent behavior; they have
homogeneous system members like some robotic architecture, UAV models,
etc. This observation is true even when agents in MAS do not communicate

110 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

with each other. More on system of systems and systems engineering can be
found in [29,33–44].

Our favorite definition is “Systems of systems are large-scale concurrent
and distributed systems that are comprised of complex systems.” The pri-
mary focus of this definition is information systems, which emphasizes the
interoperability and integration properties of an SoS [4].

The interoperability in complex systems (i.e., multiagent systems) is very
important as the agents operate autonomously and interoperate with other
agents (or nonagent entities) to take better actions [17]. Interoperability
requires successful communication among the systems. Thus, the systems
should carry out their tasks autonomously as well as communicate with other
systems in the SoS in order to take better actions for the over all goodness of
the SoS, not just for themselves. The integration implies that each system can
communicate and interact (control) with the SoS regardless of their hardware
and software characteristics. This means that they need to have the ability to
communicate with the SoS or a part of the SoS without compatibility issues
such as operating systems, communication hardware, and so on [17]. For
this purpose, an SoS needs a common language its components can speak.
Without having a common language, the SoS components cannot be fully
functional, and the SoS cannot be adaptive in the sense that new components
cannot be integrated to the SoS without major effort. Integration also implies
the control aspects of the SoS, because systems need to understand each other
in order to take commands or signals from other SoS components [17].

One might argue that is why we cannot have a global state-space model
of the SoS by combining the state-space models of the systems and subsys-
tems in an SoS. Designing a state-space mathematical model for complex
large-scale systems (for example, multiagent systems) is often difficult due to
uncertainties in the operation and complex interactions among the systems
(agents). In addition, the state-space representation of some systems may
not be available. Such decentralized systems also require an efficient data
handling (information processing) mechanism to capture the operational
behavior of the system. The problem of characterizing the behavior and rep-
resentation of such systems becomes even more difficult when each of these
systems is heterogeneous and independently operational in nature. A naïve
description of a system of system (SoS) is multiple instances of such com-
plex heterogeneous operational independent systems working in synergy to
solve a given problem as described in Definition 2.

In real-world systems, the problem is addressed in a higher level where the
systems send and receive data from other systems in the SoS and make a deci-
sion that leads the SoS to its global goals. Let us take the military surveillance
example, where different units of the army collect data through their sensors,
trying to locate a threat or determine the identity of the target. In this type of
situation, army command center receives data from heterogeneous sensor sys-
tems such as AWACS, ground RADARS, submarines, and so on. These systems
are the parts of the SoS that makes the decision; say the command and control

Chapter four: A system-of-systems simulation framework and its applications 111

station. Yet they may be developed with different technology. Thus, they will
be different in hardware and/or software. This will create a huge barrier in
data aggregation and data fusion using the data received from these systems,
because they would not be able to interact successfully without hardware and/
or software compatibility. In addition, the data coming from these systems are
not unified, which will add to the barrier in data aggregation.

One solution of the problem using system of systems is to modify the
communication medium among the SoS components. Two possible ways of
accomplishing this task are:

Create a software model of each system•	 using the same software tool. In
this approach, each component in the SoS talks to a software module
embedded in itself. The software module collects data from the sys-
tem and through the software model generates outputs and sends
to the other SoS components. If these software modules are written
with a common architecture and a common language, then the SoS
components can communicate effectively regardless of their internal
hardware and/or software architectures.
Create a common language to describe data•	 , where each system can express
its data in this common language so that other SoS components can
parse the data successfully.

The overhead that needs to be generated to have software models of each
system on an SoS is enormous and must be redone for new members of the
SoS. In addition, this requires the complete knowledge of the state-space
model of each SoS component, which is often not possible. Thus, a data-
driven approach would have better success on integrating new members to
the SoS and also applying the concept to other SoS application domains.

In this chapter, we present an SoS simulation architecture based on Exten-
sible Markup Language (XML) in order to wrap data coming from different
sources in a common way. The XML language can be used to describe each
component of the SoS and their data in a unifying way. If XML-based data
architecture is used in an SoS, the only requirement is for the SoS compo-
nents to understand/parse XML files received from the components of the
SoS. Most complex systems in use by the military and government agencies
have the processing and computational power to run an XML parser to pro-
cess the data received from the components of the SoS.

In XML, data can be represented in addition to the properties of the data
such as source name, data type, importance of the data, and so on. Thus, it
does not only represent data but also gives useful information about the SoS to
take better actions and to understand the situation better. The XML language
has a hierarchical structure where an environment can be described with a
standard and without a huge overhead. Each entity can be defined by the user
in the XML in terms of its visualization and functionality. For example, a hier-
archical XML architecture like in Listing 4.1 can be designed for an SoS so

112 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

Listing 4.1 An XML-Based System-of-Systems Architecture [4]

<!--Created 11/8/2006 Author @ Ferat Sahin -->
<?xml-stylesheet type=”text/css” href=”genericxml.css”?>

<systemofsystem>
 <id> Id of the System of Systems </id>
 <name> The name of the System of System</name>
 <system>
 <id>Id of the first system</id>
 <name> The name of the first system </name>
 <description> The description of the first system
 </description>
 <dataset>
 <Output>
 <id>Id of the first output</id>
 <data>Data of the first output</data>
 </Output>
 <Output>
 <id>Id of the second output</id>
 <data>Data of the second output</data>
 </Output>
 </dataset>
 <subsystem>
 <id>Id of the subsystem of the first System</id>
 <name>The name of the subsystem</name>
 <description>This is a subsystem of the system in
 an SoS</description>
 <dataset>
 <Output>
 <data> Data of the subsystem </data>
 </Output>
 </dataset>
 </subsystem>
 </system>
</systemofsystem>

that it can be used in the components of the SoS and also be applied to other
SoS domains easily. In Listing 4.1, the first line defines the name of the file that
describes the functionality of the user-defined keywords used to define the
SoS architecture. This file is mainly used for visualization purposes, so that
any of the SoS components can display the current data or the current status of
the SoS to a human/expert to make sure the proper decision is taken.

The first keyword of the XML architecture is “systemofsystem,” represent-
ing an SoS. Everything described after this keyword belongs to this SoS based
on the XML architecture. The following keywords, “id” and “name”, are used to
describe the system of systems. Then, the keyword “system” is used to declare
and describe the first system of the SoS. In addition to “id” and “name”, two

Chapter four: A system-of-systems simulation framework and its applications 113

more keywords, “description” and “dataset”, are used to describe the properties
of the system and to represent the data coming out of this system. Data sources
are denoted by “output” keyword, and data is provided with the keyword
“data”. After representing data from two sources, a subsystem is described by
the keyword “subsystem”. The subsystem and its data are presented in a similar
manner. Other subsystems in this subsystem or in parallel to this subsystem, as
well as additional systems, can be described in the system of systems.

Next, we present a case study concerning an experimental setup in which
groups of heterogeneous sensors and a swarm of robots are working inde-
pendently. When these systems work in conjunction, a centralized coordi-
nating system (with a data store) should help in scalability as well as efficient
data processing. These systems communicate with standard XML messages
(such as using SOAP protocol) to the central coordinator that in turn delivers
certain decision-making commands. Such data-driven communication and
decision making process does not have to depend on the underlying archi-
tecture of individual systems. An example XML file is presented in Listing
4.2 for an SoS that has two systems and a subsystem in one of the systems.

Listing 4.2 XML Architecture for an SoS Consisting of Two Systems and a Subsystem

<!--Created 11/8/2006 Author @ Prasanna Sridhar -->
<?xml-stylesheet type=”text/css” href=”xmlcss.css”?>

<systemofsystem>
 <id> 1 </id>
 <name> SoS-one</name>
 <system id=”1”>
 <name> System-one </name>
 <description> This is a system within an SoS
 </description>
 <dataset>
 <node id=”100”>
 <data>25,50%,600Lux</data>
 </node>
 <node id=”102”>
 <data>40,90%,800Lux</data>
 </node>
 </dataset>
 <subsystem id=”1”>
 <name> Sub-system</name>
 <description> This is a sub-system within a
 system in an SoS</description>
 <dataset>
 <data> 100 </data>
 </dataset>
 </subsystem>
 </system>

(continued)

114 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

The representation in Listing 4.2 is important for not only representing data
but also visualizing the data and the communication messages in the SoS.
This is especially important when a human expert oversees and/or controls
the SoS, because effective visualization of the data helps the human expert
tremendously in understanding the internal communications of the SoS. Fig-
ure 4.1 illustrates how Listing 4.2 will be visualized using Internet Explorer.

The SoS architecture for the integration among the systems should be
simulated and tested before they are put in use in the field. The next section

Listing 4.2 XML Architecture for an SoS Consisting of Two Systems and a
Subsystem (continued)

 <system id=”2”>
 <name> System-two </name>
 <description> This is a second system within the
 same SoS </description>
 <dataset>
 <data>10</data>
 </dataset>
 </system>
</systemofsystem>

Figure 4.1 Visualization of Listing 4.2 in Internet Explorer.

Chapter four: A system-of-systems simulation framework and its applications 115

presents a suitable simulation environment that can accommodate asynchro-
nous interactions and data exchange using XML.

4.3 System-of-systems simulation framework
In a system of systems, systems and/or subsystems often interact with
each other because of interoperability and overall integration of the SoS.
These interactions can be achieved by efficient communication among the
systems either by using peer-to-peer communication or through a central
coordinator in a given SoS. Since the systems within SoS are operationally
independent, interactions between systems are generally asynchronous in
nature. A simple yet robust solution to handle such asynchronous interac-
tions (specifically, receiving messages) is to throw an event at the receiving
end to capture the messages from single or multiple systems. Such system
interactions can be represented effectively as discrete-event models [4,17]. In
discrete-event modeling, events are generated at variable time intervals as
opposed to some predetermined time interval seen commonly in discrete-
time systems. More specifically, the state change of a discrete-event system
happens only upon arrival (or generation) of an event, not necessarily at
equally spaced time intervals. To this end, a discrete-event model is a fea-
sible approach in simulating the SoS framework and its interaction [4,17,45].
Several discrete-event simulation engines [46–48] are available that can be
used in simulating interaction among heterogeneous mixture of indepen-
dent systems. We consider one such simulation framework—Discrete Event
System Specification (DEVS) because of the available effective mathematical
representation and its support to distributed simulation using the Depart-
ment of Defense (DoD) High Level Architecture (HLA) [49].

4.3.1 DEVS modeling and simulation

Discrete Event System Specification (DEVS) [10] is a formalism, which pro-
vides a means of specifying the components of a system in a discrete-event
simulation. In DEVS formalism, one must specify basic models and how these
models are connected together. These basic models are called atomic models,
and larger models which are obtained by connecting these atomic blocks
in meaningful fashion are called coupled models (shown Figure 4.2). Each
of these atomic models has inports (to receive external events), outports (to
send events), set of state variables, internal transition, external transition, and
time advance functions. Mathematically it is represented as 7-tuple system:
M = < X, S, Y, Gin, Gext, h, ta >, where X is an input set, S is set of states, Y is set of
outputs, Gin is internal transition function, Gext is external transition function,
h is the output function, and ta is the time advance function. The model’s
description (implementation) uses (or discards) the message in the event
to do the computation and delivers an output message on the outport and

116 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

makes a state transition. A JAVA-based implementation of DEVS formalism,
DEVSJAVA [50], can be used to implement these atomic or coupled models.
In addition, DEVS-HLA [51], based on HLA, will be helpful in distributed
simulation for simulating multiple heterogeneous systems in the system-of-
systems framework.

The DEVS has been used extensively by the authors, as a part of a funded
research at the University of New Mexico (in collaboration with University of Ari-
zona and Jet Propulsion Laboratory) producing several research papers [51,52].

Next we present a simulation example, shown in Figure 4.3, using the
DEVS simulation environment [50]. This is a scenario where a target is being
tracked by a group of sensors deployed in the region of interest. The sensors
are grouped to form clusters, with each cluster having a cluster-head that
can send and receive information to a command center (base-station). The
entire simulation can be performed by “coupling” all the DEVS atomic mod-
els together with meaningful interconnections as shown in Figure 4.3.

Multiagent robotic systems can also be successfully demonstrated using
the DEVS formalism and DEVSJAVA software [50]. A multiagent simula-
tion framework, Virtual Laboratory (V-Lab®) was developed by the authors
for such multiagent simulation with DEVS modeling framework [51,52].
The 3-D simulation snapshots of the multiagent robotic systems simulation
is presented in Figure 4.4. Figure 4.4 (a) and (b) show four robots navigat-
ing through the obstacles to reach to the target location. The robots avoid
obstacles using simulated IR sensors, shown as gray lines on the robots. Fig-
ure 4.4 (c) and (d) show the simulation of the same concept in a dynamic
environment where obstacles can also move. The DEVS environment can be
successfully used to simulate more complex problems such as cooperative
autonomous systems in a system-of-systems framework.

As described in the SoS simulation framework, we use XML-based lan-
guage in order to represent and transfer data among the systems in the SoS.
In order to test the SoS architecture in the DEVS environment, the XML-
based language needs to be embedded into the simulation environment. The

Atomic
Model

Atomic
Model

Atomic
Model

Coupled ModelCoupled Model

Figure 4.2 DEVS model representing system and subsystems [4,17].

Chapter four: A system-of-systems simulation framework and its applications 117

Figure 4.3 A DEVS simulation example for target tracking [4].

(a) (b)

(c) (d)

Figure 4.4 Snapshots of the multiagent robotic systems simulation.

118 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

following section explores how XML and DEVS environment can be com-
bined in the simulation environment.

4.3.2 XML and DEVS

In DEVS, messages can be passed from one system (coupled or atomic model)
to another using either predefined or user-defined message formats. Since
the systems within SoS may be different in hardware and/or software, there
is a need for a unifying language for message passing. Each system need
not necessarily have the knowledge (operation, implementation, timing, data
issues, and so on) of another system in an SoS. Therefore, one has to work
at a high level (information or data level) in order to understand the present
working condition of the system. One such good fit for representing differ-
ent data in a universal manner is XML. Figure 4.5 describes conceptually an
SoS simulation example to demonstrate the use of XML as a message passing
paradigm using DEVS formalism.

In Figure 4.5, there are three systems in a hierarchy where systems A and
B send and receive data from system C. System C sends and receives data
from a higher level as described in the message of system C. The data sent
by system C has data from systems A and B. In addition, it has information
about system A and B being system C’s subsystems.

With the above-mentioned XML-based integration architecture and the
DEVS environment, we can then offer solutions to system of systems which
have heterogeneous complex systems such as mobile sensor platforms or
microdevices.

System-A
DEVS Coupled
Model

System of Systems
DEVS Coupled Model

Message in XML
Based Language

System-C
DEVS Coupled
Model

System-B
DEVS Coupled
Model

<system-A>
<data1> 10</data1>
<data2> 20</data2>
<data3> 0.2</data3>
</system-A>

<system-C>
 <system-A>
 <data1> 10</data1>
 <data2> 20</data2>
 <data3> 0.2</data3>
 </system-A>
 </system-B>
 <data1> 5</data1>
 <data2> 0.9</data2>
 </system-B>
</system-C>

<system-B>
<data1> 5</data1>
<data2> 0.9</data2>
</system-B>

Figure 4.5 A SoS simulation example with three systems and XML-like message
passing [4,18].

Chapter four: A system-of-systems simulation framework and its applications 119

4.4 SoS simulation framework examples
Based on the presented system-of-systems architecture, we have simulated
two cases. The first case is a data aggregation scenario where there is a base
robot, a swarm robot, two sensors, and a threat. The second case is a robust
threat detection scenario with a base robot, two swarm robots, five sensors,
and a threat.

4.4.1 Case study 1: Data aggregation simulation

In this scenario, the sensors are stationed such that they represent a border.
The threat is moving in the area and it can be detected by the sensors. When
the sensors detect the threat, they notify the base robot. Then the base robot
notifies the swarm robot the location of the threat based on the information
sent by the sensors.

4.4.1.1 DEVS-XML format
As mentioned before, the hardware and/or software architectures of these
systems will not be the same in reality. Thus, they may not be able to talk to
each other successfully, even though they can operate independently. We have
implemented XML-based SoS message architecture in DEVSJAVA software
[50]. In this XML-based message architecture, each system has an XML-like
message consisting of their name and a data vector. The names are used in
place of the XML keywords. The data vectors are used to hold the data of the
systems. The length of the vectors in each system can be different, based on the
amount of data each system contains. For example, the XML message of the
sensors has the sensor coordinates and the threat level. The threat level is set
when a threat gets in the coverage area of the sensors. On the other hand, the
base robot’s XML message has its coordinates, the threat level, and the coor-
dinates of the sensor who is reporting a threat. Thus, the data vector length
of base robot’s XML message has five elements, whereas the data vector of an
XML message of a sensor has three elements. Table 4.1 presents the names and
the length of the vector data of each system in the system of systems.

Table 4.1 XML Message Components for the Systems in the SoS

System Name Vector Data Length

Base robot “Base Robot” 5 (X, Y, Threat, Xt, Yt)
Swarm robot “Swarm Robot” 5 (X, Y, Threat, Xt, Yt)
Sensor “Sensor 1” 3 (X, Y, Threat)
Sensor “Sensor 2” 3 (X, Y, Threat)
Threat “Fire” 2 (X, Y)

120 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

The data vectors are made of “double” variables in order to keep track of
the positions accurately. The “threat” element in the data vector is a flag rep-
resenting threat (1.0) or no threat (0.0). The elements Xt and Yt are used for the
destination coordinates in the XML messages of the base robot and swarm
robot. These represent the coordinate of the sensor who reported a threat.

4.4.1.2 Programming environment
In DEVSJAVA environment, a data structure, called “XmlEntity” is created
based on the “entity” data structure in order to create XML messages of each
system as shown in Listing 4.3. This data structure is used to wrap/represent
the data of each system.

The structures/behaviors of the systems in the SoS are created/simulated
by DEVSJAVA atomic or coupled models. There are five atomic models in this
scenario: BRobot (for base robot), SRobot (for swarm robots), Sensor (for sta-
tionary sensors), Threat (for threat), and Plot Module (this is for plotting the
system components during the simulation). Figure 4.6 illustrates the DEVS-
JAVA development environment, all atomic models, and other components.

Figure 4.6 Atomic models and DEVSJAVA components.

Listing 4.3 XmlEntity Data Structure in DEVSJAVA [17]

public class XmlEntity extends entity{
Vector value;
String name;
/** Creates a new instance of XmlEntity */
public XmlEntity() {
}

Chapter four: A system-of-systems simulation framework and its applications 121

The simulation framework is developed as a JAVA package, called XML-
SoS. Under this package, we have atomic models and two more system
components: XmlEntity and XmlSystem. XmlSystem is where the system
components and their couplings are created or instantiated.

4.4.1.3 Simulation results
The structures/behaviors of the systems in the SoS are created/simulated
by DEVSJAVA atomic or coupled models. Figure 4.7 is a screen shot of the
DEVS model of the system of systems described above. Figure 4.8 shows a
DEVS simulation step with the XML messages sent among the systems in
the system of systems. Finally, Figure 4.9 shows the simulation environment
created by the “Plot Module” atomic model in DEVS. In the environment,
the two sensors are located next to each other, representing a border. The
“threat” (dark gray dot) is moving in the area. When the threat is in one of
the sensor’s coverage area, the sensor signals the base robot. Then, base robot
signals the swarm robot so that it can go and verify whether the threat is real
or not. The behavior of the system-of-systems components can also be seen
in Figure 4.8 as the movements of the “threat” and the “swarm robot” are
captured. The light gray dot represents the swarm robot. The base robot is
not shown, since it does not move. When the threat enters into a sensor area,
that sensor area filled with dark gray color to show the threat level. Then
the swarm robot (light gray dot) moves into the sensor to check whether the
threat is real. When the swarm robot reaches the sensor, it reports the threat

Figure 4.7 The DEVSJAVA atomic and coupled modules for XML base SoS simula-
tion [4].

122 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

Figure 4.9 The progress of the DEVSJAVA simulation on data aggregation [4].

Figure 4.8 The DEVSJAVA simulation with XML-based messages shown at the des-
tination [4].

Chapter four: A system-of-systems simulation framework and its applications 123

level to the base robot. If the threat is not real, the swarm robot moves away
from the sensor’s coverage area.

4.4.2 Case study 2: a robust threat detection system simulation

In this case, we have extended the simulation framework such that multiple
swarm robots and several sensor nodes can be simulated for a robust threat
detection scenario. In the robust threat detection (data aggregation scenario),
there are one base robot, two swarm robots, five sensors, and one threat. The
sensors are stationed such that they represent a sensor network covering an
area. The threat is moving in the area and is detected by sensors when the
threat is sufficiently close to a sensor node. All sensors communicate with a
base robot, which does not actively seek threat. Instead, the base robot pro-
cesses the information using sensor data and data sent by swarm robots. A
command center can collect processed data (aggregated data) from the base
robot without interacting with other components of the SoS such as sensors
and swarm robots.

The robust threat detection works as follows. When a sensor detects the
threat, they notify the base robot. Then the base robot sends the swarm
robots the location of the threat based on the information sent by the sensors.
Swarm robots are assumed to be equipped with the same sensors as the sta-
tionary sensors, so that they can verify the threat when they reach the sensor
area. This is crucial in order to get rid of false detections as they can cause
inefficient usage of system components. For example, if a sensor sends false
threat information to the base robot, the command center will automatically
send systems which are designed to disable the threat without verifying the
threat. This will cause spending valuable system resources and can make the
system more vulnerable to real threats. Thus, the verification of the threat by
deploying several small swarm robots can help reduce the false threat detec-
tions and save system resources. Thus, when a threat is detected, the swarm
robots are notified by the base robot. Then, swarm robots move toward the
threat area and communicate among each other, so that they do not go to the
same threat location.

4.4.2.1 XML format
As mentioned before, the hardware and/or software architectures of these
systems will not be the same in reality. Thus, they may not be able to talk
to each other successfully even though they can operate independently. We
have implemented XML-based SoS message architecture in DEVSJAVA soft-
ware [50]. In this XML-based message architecture, each system has an XML-
like message consisting of their name and a data vector. The name of each
system represents an XML tag. The data vectors are used to hold the data of
the systems. The length of the data vectors in each system can be different
based on the amount of data each system contains. For example, the XML
message of the sensors has the sensor coordinates and the threat level. The

124 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

threat level is set when a threat gets in the coverage area of the sensors. On
the other hand, the base robot’s XML message has its coordinates, the threat
level, and the coordinates of the sensor who is reporting a threat. Thus, the
data vector of base robot’s XML message has five elements, whereas the data
vector of an XML message of a sensor has three elements. Table 4.2 presents
the names and the length of the vector data of each system in the system of
systems.

The data vectors are made of “double” variables in order to keep track of
the positions accurately. The “Threat” element in the data vector is a flag rep-
resenting threat (1.0) or no threat (0.0). The elements Xt and Yt are used as the
destination (target) coordinates in the XML messages of the base robot and
swarm robot. These represent the coordinates of the sensor who reported
a threat. The “Threat V” element in the data vector is a flag representing
whether or not a swarm robot verified a threat.

4.4.2.2 Simulation setup
Figure 4.10 is a screen shot of the DEVS model of the system of systems
described above. Figure 4.11 shows a DEVS simulation step with the XML
messages sent among the systems in the system of systems. In order to
evaluate the performance of the robust threat detection, we have plotted the
locations of base robot, swarm robots, sensors, and the threat. The sensor
coverage areas are represented by a circle in order to illustrate complete sen-
sor network coverage area. The threat is represented as a dark gray dot. The
swarm robots are represented as medium gray (Swarm Robot 1) and light
gray (Swarm Robot 2) dots. In addition, the sensor locations are presented
as black dots. When a threat enters into a sensor area, the sensor location
becomes dark gray, meaning threat detection. The black dot at the upper left
corner represents the base robot, and it does not move during the simulation.
Figure 4.12 shows the initial positions of all the SoS elements.

Table 4.2 The XML Components for the Systems in the SoS

System Name Vector Data Length

Base robot “Base Robot” 5 (X, Y, Threat, Xt, Yt)
Swarm robot “Swarm Robot 1” 6 (X, Y, Threat, Xt, Yt, Threat V)
Swarm robot “Swarm Robot 2” 6 (X, Y, Threat, Xt, Yt, Threat V)
Sensor “Sensor 1” 3 (X, Y, Threat)
Sensor “Sensor 2” 3 (X, Y, Threat)
Sensor “Sensor 3” 3 (X, Y, Threat)
Sensor “Sensor 4” 3 (X, Y, Threat)
Sensor “Sensor 5” 3 (X, Y, Threat)
Threat “Fire” 2 (X, Y)

Chapter four: A system-of-systems simulation framework and its applications 125

Figure 4.10 The DEVSJAVA atomic and coupled modules for XML base SoS
simulation.

Figure 4.11 The DEVSJAVA simulation with XML-based messages shown.

126 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

Swarm robots are stationed on the top and bottom of the sensor field in
order to have faster threat verification. A threat is generally verified by the
closest swarm robot at the time of the threat detection. If the swarm robots
are far away from each other, they both may go toward a threat location.
However, when they are close enough they can communicate, and the sec-
ond swarm robot generally goes back to its original location or tries to verify
another threat. All five sensors can be seen in the figure as well. Sensors 1–3
are on the top row from left to right, respectively. Sensor 4 and Sensor 5 are
on the bottom row of the cluster, from left to right as well.

4.4.2.3 Robust threat detection simulation
In this section, we will present screenshots of the simulation in order to illus-
trate the behaviors of the robust threat detection system of systems. We set
the threat “Fire” moving randomly in the field in order to capture the behav-
iors of the swarm robots and sensors. Figure 4.13 shows the threat moving
within the range of Sensor 1. Sensor 1 shows its activation by changing its
center from dark gray to black. As soon as a threat is detected, a message is
sent to the base robot that has sensors X and Y coordinates of the sensor and
the threat flag. This flag is normally “0,” and it becomes “1” when a threat
is detected. Once the base robot receives an XML message from Sensor 1,
it checks the threat flag and sends the coordinates of Sensor 1 to Swarm
Robot 1 and Swarm Robot 2 if the flag is set to “1”. The swarm robots receive
the XML message containing the threat location (Xt, Yt) and the threat level.
When a swarm robot receives an XML message from the base robot, it checks
the threat level and moves toward the threat destination if the threat flag is

Figure 4.12 Initial conditions of XML system simulation.

Chapter four: A system-of-systems simulation framework and its applications 127

on. In Figure 4.14, Sensor 1 shows up as dark gray, and swarm robots start to
move toward Sensor 1.

In Figure 4.14, we can still see that the threat is within Sensor 1’s range,
and that the swarm robots have moved to verify the threat’s presence. Swarm
Robot 1 has reached the sensor first and has verified the threat’s presence

Figure 4.13 Sensor 1 detects a threat.

Figure 4.14 Swarm robots move to verify threat.

128 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

using its own sensor. It will remain at Sensor 1 for as long as the threat is
within the range of Sensor 1. Swarm Robot 2 is still moving toward Sensor
1, because the two swarm robots are not yet within communication range of
one another, and it does not know that Sensor 1 has reached the active sensor
already. In Figure 4.15, the threat has moved out of every sensor’s range, and
no threat is detected by the Swarm Robot 1.

Once a swarm robot verifies that there is no threat, it sets “Threat V” flag
to “0” and sends its XML data to base robot. This is the major reason for the
robustness of the threat detection as false alarms are handled properly. Once
the threat is out of the sensor area, all five sensors report to the base robot
saying all is clear, and the swarm robots are called off. After being called off
(having their “Threat V” variables set to “0” and their Xt and Yt values set
to the neutral location), the swarm robots travel to their respective positions
and await another threat.

In Figure 4.16, the threat has moved into the range of Sensor 5, causing
it to activate and signal the base robot. The base robot again signals the
swarm robots, and they move in to verify the threat’s location, much like in
Figure 4.13.

Figure 4.16 differs from Figure 4.13, since in this scenario both swarm
robots are within communication range of each other. Thus, the swarm
robots will exchange their target locations (threat locations). Each swarm
robot checks other swarm robot’s location compared to the threat target. If
the swarm robot finds the other swarm robot’s position closer to the threat
destination, it decides to move away. It would go to its neutral position if

Figure 4.15 Swarm robots move to neutral location.

Chapter four: A system-of-systems simulation framework and its applications 129

there is not another threat in a different location. Thus, two swarm robots
will never try to verify the same threat.

Figure 4.17 shows Swarm Robot 1, after communicating with Swarm Robot
2, breaking away from verifying the threat at Sensor 5 because it determined
that Swarm Robot 1 was already closer to the target. Swarm Robot 2 will now

Figure 4.16 Swarm robots move toward Sensor 5.

Figure 4.17 Swarm Robot 1 breaks off verification run.

130 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

continue to verify the threat at Sensor 5, and Swarm Robot 1 will travel to a
neutral location until it is called again by the base robot.

4.5 Conclusion
In this chapter, we have presented an extension to an XML-based SoS simu-
lation framework and discussed two simulation case studies of robust threat
detection and data aggregation with multiple autonomous systems working
collaboratively as an SoS. Through multiple swarm robots in the field, the
simulation results showed that the false alarms can be avoided by verify-
ing the threats with swarm robots. This would increase the robustness of
the data aggregation and lead to the efficient usage of the system resources.
While DEVS formalism helps to represent the structure of an SoS, the XML
provides a way to represent the data generated by each system. Together,
DEVS formalism and XML form a powerful tool for simulating any given
SoS architecture. In the future, we plan to extend the XML data representa-
tion and make it more generic and dynamic, so that when a new system is
added to an SoS simulation, it will generate its XML message automatically
and send it to other components of the SoS.

References
 1. Crossley, W. A. 2004. System-of-systems: an introduction of Purdue Univer-

sity Schools of Engineering’s Signature Area. Engineering Systems Symposium,
March 29–31 2004, Tang Center–Wong Auditorium, MIT.

 2. Lopez, D. 2006. Lessons learned from the front lines of the aerospace. Proc. of
IEEE International Conference on System of Systems Engineering, Los Angeles, CA.

 3. Department of Defense. 1992. MIL-STD-499B, Military Standard, Systems Engi-
neering, Draft, Department of Defense.

 4. Sahin, F., Jamshidi, M., and Sridhar, P. 2007. A discrete event XML based simu-
lation framework for System of Systems Architectures. Proceedings of the IEEE
International Conference on System of Systems, April 2007.

 5. Lopez, D. 2006. Lessons learned from the front lines of the aerospace. Proc. of
IEEE International Conference on System of Systems Engineering, Los Angeles, CA.

 6. Wojcik, L. A. and Hoffman, K. C. 2006. Systems of systems engineering in the
enterprise context: a unifying framework for dynamics. Proc. of IEEE Interna-
tional Conference on System of Systems Engineering, Los Angeles, CA.

 7. Azarnoush, H., Horan, B., Sridhar, P., Madni, A. M., and Jamshidi, M. 2006.
Towards optimization of a real-world robotic-sensor system of systems. Proceed-
ings of World Automation Congress (WAC) 2006, July 24-26, Budapest, Hungary.

 8. Abel, A. and Sukkarieh, S. 2006. The coordination of multiple autonomous sys-
tems using information theoretic political science voting models. Proc. of IEEE
International Conference on System of Systems Engineering, Los Angeles, CA.

 9. DiMario, M., J. 2006. System of systems interoperability types and character-
istics in joint command and control. Proc. of IEEE International Conference on
System of Systems Engineering, Los Angeles, CA.

 10. Zeigler, B. P., Kim, T. G., and Praehofer, H. 2000. Theory of Modeling and Simula-
tion. Academic Press, New York.

Chapter four: A system-of-systems simulation framework and its applications 131

 11. Zeigler, B. P., Fulton, D., Hammonds, P., and Nutaro, J. 2005. Framework for
M&S–based system development and testing in a net-centric environment.
ITEA Journal of Test and Evaluation 26(3):21–34.

 12. Mittal, S. 2006. Extending DoDAF to allow DEVS-based modeling and simula-
tion. Special issue on DoDAF, Journal of Defense Modeling and Simulation JDMS,
Vol 3, No. 2.

 13. Mittal, S. 2007. DUNIP: A prototype demonstration. http://www.acims.ari-
zona.edu/dunip/dunip.avi.

 14. Mittal, S., Risco-Martin, J. L., and Zeigler, B. P. 2007. DEVSML: Automating
DEVS simulation over SOA using transparent simulators, DEVS Symposium.

 15. Mittal, S., Risco-Martin, J. L., Zeigler, B. P. 2007.DEVS-Based Web services for
net-centric T&E. Summer Computer Simulation Conference.

 16. Mittal, S. 2007. DEVS Unified Process for Integrated Development and Testing
of Service Oriented Architectures. Ph. D. dissertation, University of Arizona.

 17. Parisi, C., Sahin, F., and Jamshidi, M. 2008. A discrete event XML based system
of systems simulation for robust threat detection and integration. IEEE Interna-
tional Conference on System of Systems, Monterey, CA, June 2008 (submitted).

 18. Sahin, F., Sridhar, P., Horan, B, Raghavan, V., and Jamshidi, M. 2007. System of
systems approach to threat detection and integration of heterogeneous inde-
pendently operable systems. Proceedings of IEEE Systems, Man, and Cybernetics
Conference (SMC 2007), Montreal.

 19. Jamshidi M. (Ed.). 2008. System of Systems—Innovations for the 21st Century.
Wiley and Sons, New York.

 20. Jamshidi M. (Ed.). 2008. System of Systems Engineering, CRC Press, Boca Raton, FL.
 21. Meilich, A. 2006. System of systems (SoS) engineering & architecture challenges

in a net centric environment. Proc. of IEEE International Conference on System of
Systems Engineering, Los Angeles, CA.

 22. Abbott, R. 2006. Open at the top; open at the bottom; and continually (but
slowly) evolving. Proc. of IEEE International Conference on System of Systems Engi-
neering, Los Angeles, CA.

 23. Jamshidi, M. 2005. Theme of the IEEE SMC 2005. Waikoloa, HA. http://
ieeesmc2005.unm.edu/.

 24. Sage, A. P. and C. D. Cuppan. 2001. On the systems engineering and manage-
ment of systems of systems and federations of systems. Information, Knowledge,
Systems Management 2(4):325–334.

 25. Kotov, V. 1997. Systems of systems as communicating structures. Hewlett Pack-
ard Computer Systems Laboratory Paper HPL-97-124, pp. 1–15.

 26. Carlock, P. G. and R. E. Fenton. 2001. System of systems (SoS) enterprise sys-
tems for information-intensive organizations. Systems Engineering 4(4):242–261.

 27. Pei, R. S. 2000. Systems of Systems integration (SoSI)—a smart way of acquiring
Army C4I2WS systems. Proceedings of the Summer Computer Simulation Confer-
ence, pp. 134–139.

 28. Luskasik, S. J. 1998. Systems, systems of systems, and the education of engi-
neers. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing.
12(1):11–60.

 29. Manthorpe, W. H. 1996. The emerging joint system of systems: a systems engi-
neering challenge and opportunity for APL. John Hopkins APL Technical Digest
17(3):305–310.

 30. Jamshidi, M. 1983. Large-Scale Systems—Modeling and Control. North-Holland
Publishing Company, New York.

132 Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar

 31. Jamshidi, M. 1997. Large-Scale Systems—Modeling, Control and Fuzzy Logic.
Prentice Hall, Saddle River, NJ.

 32. Jamshidi, M. 2006. Class notes on System of Systems Engineering Course. Uni-
versity of Texas, San Antonio, TX, Spring, 2006.

 33. Blanchard, B., and Fabrycky, W. 1998. Systems Engineering and Analysis, 3rd
ed., Prentice-Hall, Saddle River, NJ.

 34. Checkland, P. 1981. Systems Thinking, Systems Practice, 1st ed. John Wiley,
Chichester.

 35. Checkland, P. 1999. Systems Thinking, Systems Practice, 2nd ed. John Wiley,
Chichester.

 36. European Cooperation for Space Standardization. 1996. ECSS-E-10-01, System
Engineering Process, European Cooperation for Space Standardization.

 37. Electronic Industries Alliance. 1998. EIA/IS 632, Systems Engineering, EIA
(1994). EIA/IS 731.1, Systems Engineering Capability Model, EIA.

 38. Grady, J. O. 2000. Systems Engineering Deployment. CRC Press, Boca Raton, FL.
 39. IEEE. 1994. IEEE P1220, Standard for Application and Management of the Sys-

tems Engineering Process, IEEE.
 40. Martin, J. N. 1997. Systems Engineering Guidebook. CRC Press, Boca Raton, FL.
 41. Department of Defense. 1992. MIL-STD-499B, Military Standard, Systems Engi-

neering, Draft, Department of Defense.
 42. Rechtin, E. and Maier, M. 2000. The Art of Systems Architecting, 2nd ed. CRC

Press, Boca Raton, FL.
 43. Sage, A. P. 1992. Systems Engineering, John Wiley and Sons, New York.
 44. Keating, C., Rogers, R. Unal, R., Dryer, D., Sousa-Poza, A., Safford, R., Peterson,

W., and Rabadi, G. 2003. System of systems engineering. Engineering Manage-
ment Journal 15(3):36–45.

 45. Mittal, S., Zeiglar, B. P., Sahin, F, and Jamshidi, M. 2008. Modeling and simula-
tion for systems of systems engineering. In System of Systems—Innovations for
the 21st Century, Jamshidi, M. (Ed.), Wiley and Sons, New York.

 46. Matlab Simulink simulation and model-based design. http://www.mathworks.
com/products/simulink/.

 47. OMNET++ community site. http://www.omnetpp.org/.
 48. The network simulator—NS-2. http://www.isi.edu/nsnam/ns/.
 49. Defense Modeling and Simulation Office. 2008. High level architecture. U.S.

Department of Defense. https://www.dmso.mil/public/transition/hla/.
 50. Zeiglar, B. P. and Sarjoughian, H. [2000] Introduction to DEVS modeling and

simulation with JAVA—a simplified approach to HLA-compliant distributed
simulations, ACIMS—Arizona Center of Integrative Modeling and Simulation.
http://www.acims.arizona.edu.

 51. Sridhar, P. and Jamshidi, M. 2004. Discrete event modeling and simulation: V-Lab.
Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

 52. Sridhar, P., Sheikh-Bahaei, S., Xia, S., and Jamshidi, M. 2003. Multi-agent simu-
lation using discrete event and soft-computing methodologies. Proceedings of
IEEE International Conference on Systems, Man and Cybernetics.

133

chapter five

Technology evaluation
for system of systems
Patrick T. Biltgen

Contents

5.1 Introduction.. 133
5.1.1 The challenge of systems of systems .. 136
5.1.2 From performance to effectiveness ... 137

5.2 Using modeling and simulation to quantify technology potential138
5.2.1 Introduction to modeling and simulation 138
5.2.2 Using an integrated, hierarchical, modeling and simulation

environment ... 139
5.3 Using surrogate models to accelerate technology evaluation studies142

5.3.1 Introduction to the concept of surrogate models...................... 142
5.3.2 Response surface methodology ... 143
5.3.3 Artificial neural networks .. 144
5.3.4 Using a design of experiments (DoE) to generate data for a

surrogate model ... 148
5.3.5 Process for executing the DoE and generating surrogates 149

5.4 Performing technology trade studies with surrogate models 150
5.5 Summary .. 157
References .. 158

5.1 Introduction
Technology, from the Greek techne meaning “craft” and logia meaning “order-
ing,” is “the knowledge of the manipulation of nature for human purposes”
[1]. Technology is so critical to the development of civilizations that archae-
ologists and anthropologists divide human prehistory into epochs based on
the technology of the period. Since the end of World War II, exploitation of
advanced technology has been the cornerstone of national power, in both the
civil and military domains, and the development of new technology is an
ongoing imperative driven by market forces and national needs.

134 Patrick T. Biltgen

Technology evaluation is defined as the assessment of the relative benefit of
a proposed technology for a particular purpose with respect to one or more
metrics [2]. The goal of technology evaluation is to rapidly and efficiently
identify high-payoff technologies and establish a required level of resources
to mature technologies to the point of implementation. In practice, the com-
plexity introduced by the myriad interactions in the systems-of-systems
problem space makes it difficult to precisely identify these technologies.
Since the uncertainties related to the operational environment, assumptions,
technology readiness, system interactions, and human interaction with
constituent systems cannot easily be captured at the concept exploration
phase of design, it may be sufficient to enumerate technology sensitivities
and eliminate regions which exhibit little payoff using first-order methods.
Essentially, the technology evaluation methods discussed herein are most
appropriate to bound the space of feasible technologies and guide further
analysis efforts as opposed to revealing a 1-to-n list of candidate technolo-
gies that enhance value with 100% certainty.

Over the past twenty years, many methods for technology evaluation
have been proposed, and some are valid for application in the systems-of-
systems domain. The least elegant, but arguably the most effective, method
for evaluating technologies is physical experimentation. Epitomized by the
X-series of prototype aircraft, the experimental approach is used heavily in
the electronics and software industry, where candidate technologies and
new features are incorporated into rapidly refreshed products. If accepted
by the marketplace, their use becomes widespread. A typical example is the
ubiquitous camera phone, which began life in Japan as the J-Phone in 2000.
Luce refers to the rapid spread of technology into society by this means as
technology diffusion [3].

The United States Air Force (USAF) and other organizations use a panel of
expert scientists, engineers, and senior leaders called the Scientific Advisory
Board (SAB) to formulate a long-term plan for technology utilization using
a committee approach. Originally instituted in 1944 and led by Theodore
von Karman, the original purpose of the SAB was to examine advances in
basic science and analyze how these discoveries may affect the employment
of airpower. An SAB study commissioned in 1994 directed the SAB to iden-
tify “technologies that will guarantee the air and space superiority of the
United States in the 21st Century” [4]. The fifteen-volume, 2000-page docu-
ment recommends technologies that support a number of Air Force missions;
however, the study is tightly focused on specific vehicles, qualitative infor-
mation, brainstorming, and anecdotal evidence. The vehicle-centric nature
of the recent studies makes it difficult to assess the overall effectiveness of
proposed technologies in a system-of-systems context. According to historian
Michael Gorn, more recent studies have relied less on outside input from sci-
entific leaders and have been very tightly focused on specific vehicles, quali-
tative information, brainstorming, and anecdotal evidence [5].

Chapter five: Technology evaluation for system of systems 135

The Technology Development Approach (TDA), developed by Dr. Donald
Dix, is a qualitative method for identifying expected technology impacts at
the system-of-systems level. The TDA examines several technology efforts
and objectives and proposes point-estimates for the key performance param-
eters (KPPs) for each technology. These technologies are then rolled up into
the subarea goals for the proposed system and extrapolated to expected
improvements in measures of effectiveness (MoEs). The TDA is constructed
using expert opinion, brainstorming, and qualitative analysis [6].

Technology Identification, Evaluation, and Selection (TIES), developed by
Kirby and Mavris, is a “comprehensive and structured method to allow for
the design of complex systems which result in high quality and competitive
cost to meet future, aggressive customer requirements” [7]. This technique
uses physics-based modeling to quantitatively assess the impact of technolo-
gies by representing the technology KPPs as “k-factors,” which are essen-
tially scale factors on discipline-level metrics. While TIES can be seen as a
quantitative extension of the TDA approach, traditional applications of the
method have been primarily focused on the evaluation of performance for
a system and have to date not addressed the issue technology evaluation for
large-scale systems of systems [7].

Currently, the Air Force Research Laboratory (AFRL) is actively engaged
in a research effort to “integrate new methodologies and tools with existing
‘industry-standard’ tools to effectively test the effects of new technologies
on air vehicle capability” [8]. An AFRL program, Quantitative Technology
Assessment (QTA), an extension of TIES to the capability level, is enabled
through constructive simulation and parametric modeling [9]. This tech-
nique, well suited for system-of-system studies and evaluation of technolo-
gies with respect to capability-level MoEs, serves as a model of a superior
process for technology evaluation.

Although many processes for technology forecasting have been proposed,
a formalized process for technology evaluation that provides a rigorous, jus-
tifiable, and traceable approach to decision making is needed. Some desired
attributes of a process for technology evaluation include the following:

Quantitative: Compare solutions based on measurable quantities; limit •	
influence of subjective judgment and bias.
Traceable: Identify the source of benefit and the relative sensitivities •	
to changes.
Flexible: Generalizes to multiple problems and easily adds new vari-•	
ables and dimensions.
Reusable: Analysis environment can be used to study multiple attributes •	
of the same problem or to study the same problem in a different context.
Agile: Can be applied in a reasonable time frame; decisions can be made •	
before the technologies under consideration are obsolete.
Parametric: Avoids point solutions and provides visibility into behav-•	
iors previously obscured by the complexity of the problem.

136 Patrick T. Biltgen

Affordable: Produces valid results without extensive manpower com-•	
mitments and uses commercial off-the-shelf tools when possible.
Simple: To the highest degree possible, the process must be logical and •	
teachable to enable widespread adoption.

The aforementioned attributes are generally desirable in any physics-
based multidisciplinary analysis; however, the challenge of technology eval-
uation is compounded by the increasing focus of the systems engineering
process on large-scale heterogeneous systems of systems.

Technologies are the foundation of the systems-of-systems hierarchy
shown in Figure 5.1. A process for technology evaluation ideally must not
only examine the influence of proposed technologies from a bottom-up
impact analysis standpoint but must also demonstrate applicability for a top-
down decomposition of requirements to an unknown suite of potential tech-
nologies. This chapter discusses enabling techniques to examine technology
infusion at various locations in the hierarchy shown in Figure 5.1 and sum-
marizes approaches for both bottom-up and top-down technology evalua-
tion for systems of systems.

5.1.1 The challenge of systems of systems

A system, from the Greek sunistanai meaning “to combine” is “a combination
of interacting elements organized to achieve one or more stated purposes” [10].
In recent years, the term “system of systems” (SoS) has become increasingly

Figure 5.1 Systems-of-systems hierarchy [2].

Chapter five: Technology evaluation for system of systems 137

popular terminology for a large-scale system that is comprised of a variety
of heterogeneous, interoperable, collaborative systems [11]. While the precise
origin of this term is unclear, a 1964 paper by Berry on New York City refers
to “cities as systems within systems of cities” [12]. Additional definitions of the
term abound in the literature:

The Department of Defense defines a system of systems as “a set or •	
arrangement of systems that are related or connected to provide a given
capability” [13].
The International Council on Systems Engineering (INCOSE) refers to •	
the definition by Krygiel: “a system-of-systems is a set of different sys-
tems so connected or related as to produce results unachievable by the
individual systems alone” [14].
The Air Force Scientific Advisory Board defines a system of systems •	
as “a configuration of systems in which component systems can be
added/removed during use; each provides useful services in its own
right; and each is managed for those services. Yet, together they exhibit
a synergistic, transcendent capability” [15].

Maier has proposed five criteria for the identification of a system as a sys-
tem of systems [16]; however, ten years after his publication, disagreements
bristle regarding the classification of systems as systems of systems, fami-
lies of systems, federations of systems, complex systems, complex adaptive
systems, coalitions of systems, collaborative systems, interoperable systems,
netcentric systems, supersystems, and others [17]. For the purposes of this
chapter, the term “systems of systems” is used to define “a class of systems
wherein a set of independent systems, each having unique behavior and per-
formance, is organized to perform collaboratively and coherently to achieve
a purpose” [18].

Evaluation of systems-of-systems effectiveness is compounded by a num-
ber of challenges, including the independence of constituent systems, the
interdependence between constituent systems, the complexity of the SoS and
its operation in an environment, the fuzzy boundaries between elements,
and the lack of engineering models at the SoS level. Techniques for quantita-
tive evaluation of technology potential for systems of systems must address
these challenges, and many of these issues are topics for current research in
the field.

5.1.2 From performance to effectiveness

In the study of systems of systems, it is necessary to highlight a shift from
evaluation of performance to evaluation of effectiveness. Performance
describes what a system does. Effectiveness describes what a system does in
a relevant context or scenario. For example, if an aircraft can fly 1,000 nautical
miles at 40,000 feet, this is a statement of its performance. The same aircraft

138 Patrick T. Biltgen

has different effectiveness at completing a mission if the 1,000-nautical-mile
distance is over water or over a hostile country. Traditional systems engi-
neering primarily focuses on the calculation of system performance. When
operational context is considered, it is usually rare for multiple scenarios or
operating conditions to be considered in the evaluation of a product or its
constituent technologies, primarily due to the difficulty in establishing a rel-
evant testing environment for the myriad conditions.

The term measure of performance (MoP) refers to a metric used to evaluate
how well a system performs a task, while a measure of effectiveness (MoE) is
“a criterion used to assess changes in system behavior, capability, or opera-
tional environment that is tied to measuring the attainment of an end state,
achievement of an objective, or creation of an effect” [19]. MoPs are usually
more appropriate for system-level evaluation, and MoEs are more relevant to
systems of systems–level evaluation. While these terms are standard defini-
tions used by the U.S. Department of Defense, their meaning is also apt for
the description of commercial systems of systems.

Effective technology evaluation for systems of systems requires a method
that quantifies the benefit of a proposed technology against one or more
MoEs, taking into account the complexities of the SoS analysis problem. This
often implies that one or more scenarios simulating the relevant operational
conditions for the SoS must be developed.

5.2 Using modeling and simulation to
quantify technology potential

5.2.1 Introduction to modeling and simulation

Many proven techniques for resource allocation are based on qualitative
information and subjective analysis. For example, the Technology Devel-
opment Approach (TDA) evaluates system of systems–level MoEs using a
committee approach [6]. Unfortunately, a committee approach is only valid
when the physics of the problem are well understood and seldom extends
to the system-of-systems level where the complex interactions between het-
erogeneous elements do not always follow intuitive or predictable patterns.
Also, since the experience base of subject matter experts is bounded by tacit
information based on known situations and scenarios (essentially a partial
derivative), an expert-driven process is often not appropriate to produce
quantitative estimates of system effectiveness in uncertain operating con-
ditions. To address these shortcomings, an approach based upon modeling
and simulation is proposed.

Modeling, “a simplified description of a complex entity or process,” is lit-
erally the creation of a model or alternative representation [20]. Its comple-
ment is simulation, defined as “the process of imitating a real phenomenon
with a set of mathematical formulas” [21]. Simulation can also be described
as the repeated exercise of a model under various conditions. The use of

Chapter five: Technology evaluation for system of systems 139

modeling and simulation in the aerospace community is not new and has
coevolved dramatically with advancement in digital computers [22]. For
instance, since the introduction of Integrated Product and Process Develop-
ment (IPPD) in late 1993, Schrage has advocated a generic methodology that
leverages a computer-integrated environment to enable robust design simu-
lation [23]. This methodology “provides the means for conducting parallel
process/product (cost/performance) design trades at various levels (system,
component, part)” and enables “distributed design and development” [24].

Furthermore, the National Science Foundation, in its 2006 report on “Sim-
ulation-Based Engineering Science” notes that simulation “can be used to
explore new theories and to design new experiments to test these theories”
and “also provides a powerful alternative to the techniques of experimental
science and observation when phenomena are not observable or when mea-
surements are impractical or too expensive” [25]. Modeling and simulation
are enabling techniques that provide a means to calculate MoEs for candi-
date technologies and system architecture and essentially act as a transfer
function from technology performance to system-of-systems effectiveness.

5.2.2 Using an integrated, hierarchical, modeling
and simulation environment

While an appropriate constructive simulation can be used to translate system-
level MoPs to system of systems–level MoEs, it is first necessary to discuss the
creation of a hierarchical modeling and simulation environment. For illus-
trative purposes, the example of a long-range bomber aircraft will be used.
The modeling and simulation environment for this example can be divided
into three levels, subsystem, system, and system of systems, as shown in Fig-
ure 5.2. In this simplified example, the system level is typified by the design of
the bomber aircraft and the weapon it fires. Note that, while it can be argued
that the weapon is a subsystem of the aircraft, the exact enumeration of level
names is immaterial for this example. Subsystems that contribute to both sys-
tem designs include aerodynamics and propulsion, although other compo-
nents such as sensors, flight controls, structures, and the like could also be
included if such models are readily available. As shown in Figure 5.2, sub-
system-level analyses such as aerodynamics and propulsion calculate quanti-
ties such as lift coefficients, drag coefficients, fuel consumption, and engine
thrust that are used by the system-level analyses. Inputs to these analyses
include component efficiencies, airfoil characteristics, pressure ratios, and
material limits, which can be affected by technologies. While each of the boxes at
the system and subsystem level are typical of models, the mission evaluation
box is more appropriately termed a simulation. In the mission evaluation tool,
an aircraft and weapon combination designed using lower-level models is
assessed against a given threat laydown, in a certain geographic region, with
particular concepts of operations (CONOPS), rules of engagement, and battle

140 Patrick T. Biltgen

In
pu

ts
:

C
om

po
ne

nt
 E

ffi
ci

en
ci

es

Pr
es

su
re

 R
at

io
s

M
as

s F
lo

w
 R

at
e

M
at

er
ia

l T
em

p.
 L

im
its

of
 S

ta
ge

s
En

gi
ne

 A
rc

hi
te

ct
ur

e
Ty

pe

Pr
op

ul
sio

n
A

na
ly

sis

A
er

od
yn

am
ic

A

na
ly

sis

Sy
st

em
-o

f-s
ys

te
m

s l
ev

el

Sy
st

em
 le

ve
l

Su
bs

ys
te

m
 le

ve
l

W
ea

po
n

D
es

ig
n

A
irc

ra
ft

D
es

ig
n

M
iss

io
n

Ev
al

ua
tio

n

Fu
el

 C
on

su
m

pt
io

n
En

gi
ne

 Th
ru

st

Li
ft

C
oe

ff.

D
ra

g
C

oe
ff.

W
ea

po
n

W
t.

W
ea

po
n

Ra
ng

e
W

ea
po

n
Sp

ee
d

A
irc

ra
ft

Ra
ng

e
A

irc
ra

ft
Sp

ee
d

A
irc

ra
ft

W
ei

gh
t

In
pu

ts
:

Li
ft/

D
ra

g
Ra

tio

A
irf

oi
l C

ha
ra

ct
er

ist
ic

s
Fl

ig
ht

 C
on

di
tio

ns

In
pu

ts
:

W
in

g
A

sp
ec

t R
at

io

Pr
op

ul
sio

n
C

ha
ra

ct
er

ist
ic

s
Fu

el
 V

ol
um

e
M

at
er

ia
l T

em
p.

 L
im

its

Tr
aj

ec
to

ry

In
pu

ts
:

M
iss

io
n

Ra
ng

e
W

in
g

Lo
ad

in
g

Th
ru

st
/W

ei
gh

t R
at

io

W
in

g
Sw

ee
p

W
in

g
A

sp
ec

t R
at

io

W
in

g
Ta

pe
r R

at
io

M

iss
io

n
Pr

ofi
le

C

ru
ise

 A
lti

tu
de

M
un

iti
on

s

In
pu

ts
:

Th
re

at
 L

ay
do

w
n

G
eo

gr
ap

hy

Ba
sin

g
O

pt
io

ns

C
O

N
O

PS

Ru
le

s o
f E

ng
ag

em
en

t
Ba

ttl
e

M
an

ag
em

en
t

M
oE

’s

of
 T

ar
ge

ts
 K

ill
ed

of
 A

irc
ra

ft
Lo

st

of

 W
ea

po
ns

 U
se

d
D

ur
at

io
n

of
 W

ar

C
os

t o
f W

ar

Li
ve

s L
os

t

Fi
gu

re
 5

.2

E
xa

m
pl

e
of

 a
 h

ie
ra

rc
h

ic
al

 m
od

el
in

g
an

d
 s

im
u

la
ti

on
 e

nv
ir

on
m

en
t f

or
 a

ir
cr

af
t d

es
ig

n
an

d
 e

ff
ec

ti
ve

ne
ss

 e
va

lu
at

io
n.

Chapter five: Technology evaluation for system of systems 141

management doctrine. MoEs such as the number of targets killed, number of
friendly aircraft lost, number of weapons fired, duration of the war, and the
cost of the war are calculated as a function of system-level parameters such as
range, speed, and number of weapons per aircraft.

To illustrate how performance and effectiveness differ in this environment,
assume that a baseline aircraft configuration can be defined by specifying all
the input parameters on the right side of each box in Figure 5.2. Using a differ-
ent airfoil in the aerodynamic analysis that results in a lower drag coefficient
at the cruise flight condition will impact the drag estimates used in the air-
craft design box. When the aircraft synthesis and sizing code uses this modi-
fied value in its analysis, the aircraft range may increase, maximum speed
may increase, and weight may decrease. This is an example of how a change
in performance can be quantitatively evaluated. In an analysis of the results,
an aircraft designer would summarily conclude that reduced drag produces
a “better” aircraft; however, this does not mean that the aircraft is better in
terms of effectiveness. Using the mission evaluation constructive simula-
tion, a different analyst can assess the change in MoEs as a result of a faster,
long-range aircraft. Depending on the scenario specified, the aircraft may or
may not be effective; for example, supersonic aircraft generally require more
maintenance than subsonic aircraft. A faster aircraft may prosecute more tar-
gets in a given amount of time, but the cost of the war may increase due to the
operations and support of the high-speed aircraft. In summary, an optimal
configuration at the system level is not necessarily optimal at the system-of-
systems level. The same logic can be applied to the system/subsystem level.
Extending a well-known paradigm from the multidisciplinary optimization
community, the optimization of individual discipline-level performance
parameters may result in a globally suboptimal solution.

A linked, hierarchical modeling and simulation environment can be cre-
ated by linking the outputs at one hierarchical level to the inputs at another
hierarchical level. Although this may seem straightforward, it was not until
the 1990s that software tools for such linkage emerged, and Kroo refers to the
connection of different multidisciplinary analyses as “first generation multi-
disciplinary optimization” techniques [26]. An example, shown in Figure 5.3,
links the NASA Flight Optimization System (FLOPS), an aircraft sizing and
synthesis code, to the FLAMES simulation framework. The FLAMES air-
craft flight dynamics model requires input parameters that are generated by
FLOPS such as aircraft range, speed, and weight. In practice, while there are
many ways to link modeling and simulation tools, commercial integration

Targets Killed
Time of War
Cost of War

Aircraft Range, Aircraft Speed, Aircraft Weight

Flight Optimization System

Wing Loading
Thrust/Weight
Mission Profile

Linked Variables:

FLOPS (NASA)
Constructive Simulation Framework

FLAMES (Ternion)

Figure 5.3 Model linking to translate MoPs to MoEs.

142 Patrick T. Biltgen

frameworks such as Engineous’s iSIGHT, Phoenix Integration’s ModelCen-
ter®, and Technosoft’s Tool Integration Environment have become increas-
ingly adept at this task.

Creating a hierarchical modeling and simulation environment to develop
a transfer function from atomic-level technology parameters to system of
systems–level MoEs is the first step in enabling technology evaluation. With
such an environment, quantitative trade studies can be performed one point
at a time. In fact, even the linking of computerized tools across a simulation
hierarchy speeds the analysis process and reduces the propensity of errors to
develop in nonintegrated environments. The next step in performing tech-
nology evaluation studies is to use this linked hierarchical environment as
an enabler to conduct large domain-spanning exploratory studies on tech-
nology potential.

5.3 Using surrogate models to accelerate
technology evaluation studies

The previous section introduced the notion of a linked, hierarchical physics-
based modeling and simulation environment. This environment, in and of
itself, provides two attributes required for technology evaluation for systems
of systems: quantification and traceability. Using proven modeling and sim-
ulation tools, the precise benefit of proposed technologies on top-level MoEs
can be calculated based on the physics of the problem. Sensitivities of each
MoE to the key performance parameters at lower levels can be used to trace
impacts across one or more levels. Unfortunately, what the aforementioned
environment lacks is speed; evaluation of a single case requires that all tools
in the hierarchy be executed. This is at best a partially parallel process and,
for tightly coupled problems, often a serial one with iteration and conver-
gence loops.

One way to increase the speed of the analysis process is to decrease the
fidelity of all the models in the hierarchy. This approach is common in the
analysis of many scientific processes, for example, the assumption of a “bil-
liard ball” model of collision in kinetic theory; however, since the complex
interactions between the various systems and subsystems in the hierarchy
may lead to complex emergent behaviors that may be lost through lineariza-
tion and simplification, an alternate approach is desired. A technique that
lends itself to high-speed, high-fidelity analysis is called surrogate modeling,
which relies on a reduction in the degrees of design freedom as opposed to a
reduction in model fidelity as a means to decrease run time.

5.3.1 Introduction to the concept of surrogate models

Surrogate models are an approximation technique for replacing existing
analytical models with a suitable substitute. Surrogate models in the form

Chapter five: Technology evaluation for system of systems 143

of response surface equations were first introduced by Box and Wilson in
1951 and developed extensively throughout the 1950s [27]. After several
failed attempts in the 1970s and 1980s, the first successful widespread appli-
cation of surrogate models in the aerospace community was initiated by Tai,
Mavris, and Schrage in 1995 [28]. Over the last five years, the term “surrogate
model” has gradually replaced “metamodel” in the literature, since the latter
is often associated with Unified Modeling Language (UML) diagrams and
other low-fidelity approximation of codes in the software engineering field.

The basic idea behind a surrogate model can be abstracted from a trans-
fer function. A modeling and simulation tool is one type of transfer func-
tion from input variables to output variables. Through a series of predefined
mathematical and physics-based relationships inside the tool, a set of input
variables can be transformed into an appropriate set of output variables. The
concept of the surrogate model addresses the question “is there an alterna-
tive transfer function that maps the same inputs to approximately the same
outputs?” Since the exact relationship between responses and input variables
may be difficult to define analytically and inconsequential to the creation of a
surrogate mapping, a surrogate model is an empirically assumed model that
approximates these relationships. These “models of models” can be highly
accurate if appropriately created and form the basis of modern advanced
design for their wide range of applicability. In practice, many types of sur-
rogate models exist, including response surface equations, artificial neural
networks, radial basis functions, Kriging models, Gaussian processes, and
others. The first two of these are the most popular for systems-of-systems
analysis and are discussed below [29–34].

5.3.2 Response surface methodology

One process by which surrogate models are created is called response sur-
face methodology (RSM). RSM approximates the inherent dependence of
functional responses (outputs) to a series of design variables (inputs) using a
least-squares regression approach to the determination of unknown model
coefficients. The resulting equation takes the shape of a multidimensional
surface, leading to the term “response surface equation” or RSE. According to
Myers and Montgomery, a second-order RSE based on a Taylor series expan-
sion is a functional form that benefits from flexibility, ease of creation, and
considerable practical experience that demonstrates its effectiveness [35].
The traditional form of a second-order RSE for response, R, coefficients, b,
independent variables, x, and an error term ε is shown in Equation 5.1.

 R b b x b x bo i

i

k

i ii

i

k

i ij

j i

k

i

k

= + + +
= = = +=

−

∑ ∑ ∑
1 1

2

11

1

∑∑ +x xi j ε (5.1)

144 Patrick T. Biltgen

Response surface equations have been used in a wide variety of system-
modeling activities including propulsion systems [36,37], automobile com-
ponents [38], power systems [39], commercial aircraft [40–43], unmanned
vehicles [44], helicopters [45,46], tiltrotors [47], missiles [48–50], surface
ships [51,52], network switches [53], and torpedo design [54,55]. RSEs have
also found use in the design of systems of systems including the U.S. air
transportation system [56–58] and military aircraft survivability [59,60].
Response surface equations can be easily created for a wide range of prob-
lems; however, they may perform poorly when nonlinear or discontinuous
responses endemic to systems of systems must be modeled. For this reason,
the mechanics behind response surface models will not be detailed in this
chapter.

5.3.3 Artificial neural networks

An artificial neural network is an interconnected group of mathemati-
cal functions that is patterned on the connections between nerve cells.
The fundamental idea in this approach is that the computational elements
themselves are very simple, but like biological neurons in human brains,
the connections between the neurons define very complex behaviors and
computational abilities. The technique can trace its origin to a 1943 article
by neurophysiologist Warren McCulloch and mathematician Walter Pitts
entitled “A Logical Calculus of Ideas Immanent in Nervous Activity” [61].
As in biological systems, a single neuron can be connected to many other
neurons to create very complex networks of structures. Artificial neural net-
works have found widespread application in pattern recognition and classi-
fication, control processes, speech recognition, optical character recognition,
autonomous robots, and the development of adaptive software agents. Their
ability to model processes also makes them ideal for regression tasks, espe-
cially those with discontinuous or highly nonlinear responses. Introductory
works include references [62] and [63]. Although there are many types of
neural networks including stochastic neural networks, recurrent networks,
Hopfield networks, radial basis functions, instantaneously trained networks,
cascading neural networks, and committees of machines, the most common
type of neural network and the technique used with success in the modeling
of systems of systems is a feedforward neural network. This type consists
of several layers of interconnected neurons. Typically, three layers are used:
the input layer, the hidden layer, and the output layer, in a construct called a
multilayer perceptron as shown in Figure 5.4.

As noted in the figure, a single response has a given number of inputs, Xn,
and an unknown number of hidden nodes, Hm, whose optimum configura-
tion is problem dependent. This number can be found iteratively or through
numerical optimization. The power of neural networks comes from their abil-
ity to model nonlinear behaviors. This is often accomplished through the use

Chapter five: Technology evaluation for system of systems 145

of a sigmoid function, a special case of the logistic curve, as the transfer func-
tion between the input layer and the hidden layer, shown in Equation 5.2.

 S z
e z() =

+ −
1

1
 (5.2)

Also called the “squish” or “squash” function, the sigmoid reduces the
neuron’s activation level to the range of [0,1] and stimulates the property of
nonlinearity in the network. As an added benefit, the sigmoid function has
a very simple derivative, which is needed to perform the backpropagation
feature during the training process. Other relations such as a step function
or hyperbolic tangent function can be used in place of the logistic sigmoid
equation. To formulate a neural network equation, the value of each hidden
node, Hj, is calculated using the sigmoid function where the parameter z
in Equation 5.2 is replaced by a linear function of the input variables, Xi, as
shown in Equation 5.3.

 H

e

j
a b Xj ij i

i

N
=

+
− + ∑

=

1

1 1
()

 (5.3)

Finally, the unified form of the neural network equation (Equation 5.4)
can be written by encapsulating each hidden node within a linear function
which transforms the numerical values from the hidden layer to the output
layer. Note that one such equation is needed to calculate the value of each
response, Rk.

Single Response

Output Layer Hidden Layer Input Layer

of Hidden Nodes
Defined by Optimization

Pattern of Connections
Found by Training

...

...

Hm

H5

H4

H3

Y1

Xn

X3

X2

X1 H2

H1

Figure 5.4 Structure of a feedforward neural network [2].

146 Patrick T. Biltgen

 R e f

e

k k jk
a b Xj ij i

i

N
= +

+
∑

− +

=

1

1 1

=

∑
j

NH

1

 (5.4)

where:
 aj is the intercept term for the j th hidden node
 bij is the coefficient for the i th design variable
 Xi is the value of the i th design variable
 N is the number of input variables
 ek is the intercept term for the k th response
 fjk is the coefficient for the j th hidden node and k th response
 and NH is the number of hidden nodes

Until recently, the development of robust neural network equations was
considered more of an art than a science, and few computational tools existed
to automate the training process. Several challenges led to a lack of process
standardization for neural network creation. For instance, the topology of
the neural network consisting of the number of layers and number of hidden
nodes must be user specified, and the network must be “trained” through an
iterative procedure for a user-specified time. Furthermore, the selection of
the number of hidden nodes is often problem dependent and can be difficult
without an optimizer: too few nodes incorrectly captures the behavior of the
code, while too many leads to overfit problems [64].

To provide a more rigorous approach to neural network creation and val-
idation, Johnson and Schutte developed the Basic Regression Analysis for
Integrated Neural Networks (BRAINN) module, which combines optimiza-
tion algorithms with the MATLAB neural network toolbox and a simple GUI
[65]. Using this tool, data from the integrated simulation environment can be
quickly analyzed and an accurate neural network equation produced. The
training and optimization process used by BRAINN is shown in Figure 5.5.
Here, initial guesses for the unknown model coefficients a, b, c, d, e, and f are
assumed by the training algorithm. These coefficients are adjusted accord-
ing to the difference between the actual and estimated response using the
backpropagation supervised learning technique [66]. The training process
is encapsulated within an optimization algorithm that varies the number of
hidden nodes, adjusting the topology of the network to minimize the error
in the estimated response.

To use a neural network surrogate model in place of the actual simula-
tion tool for high-fidelity high-speed analysis demands that the network
accurately captures the behavior of the simulation tool. This is especially
critical when the equation is used for parametric and probabilistic analysis.

Chapter five: Technology evaluation for system of systems 147

Traditionally, simulation data is divided into two groups, a training set
used to directly train the neural network and a smaller validation set used
to assess the error of the model at off-design conditions. This technique
provides a means to ensure that the equation is valid across the design
space with maximum confidence and minimum overfit. In addition to the
built-in checks in the BRAINN routine, the five-step goodness-of-fit pro-
cedure developed by Kirby and Barros should be used to ensure that the
neural net accurately predicts points within the sampled design space [68].
Finally, it is important to note that, like all approximations, the neural net-
work equation is not valid outside the ranges used to create it: neural net-
works can be used for interpolation, but never for extrapolation.

While neural networks have been used for many years in the design of
control systems for aerospace applications, they have become increasingly
popular for systems-of-systems studies and have been applied to the design
of gas turbine propulsion systems [69], aerodynamics [70], air defense weap-
onry [71], the space shuttle main engine [72], spacecraft trajectory design [73],
and a long-range strike system architecture [74].

Although computerized tools exist for the creation of neural networks,
response surface models, and other surrogates, the selection of a surrogate
type is merely another hypothesis in the analysis process. Neural networks
have demonstrated effectiveness for systems-of-systems technology evalu-
ation; however, simpler models can be used if they adequately capture the
behaviors of the desired design space.

Adjust Number of Hidden Nodes, NH

Adjust Scaling Coefficient Weights

Output Data from Code
Neural Network Equation

Training Process

Optimization Process

Define NH
Hidden Nodes

For given training time
Or # of training attempts... Evaluate Response Error

Ractual

(Ractual – Restimated)2

RestimatedRk = ck + dk ek +
1

1 + e –(aj + Σ(bijXi))
Σ

NH
Nj=1

j=1

fjk

Figure 5.5 Procedure for neural network training [67].

148 Patrick T. Biltgen

5.3.4 Using a design of experiments (DoE) to
generate data for a surrogate model

The linked hierarchical suite of modeling and simulation tools provides a
means to calculate MoE changes based on technology parameters, and the
surrogate modeling technique enables rapid high-fidelity analysis. One
remaining challenge is the need to generate data for surrogate creation in an
efficient and repeatable manner. For this, the concept of “design of experi-
ments” is introduced.

A design of experiments (DoE) is “a systematic, rigorous approach to
engineering problem solving that applies principles and techniques at the
data collection stage so as to ensure the generation of valid, defensible, and
supportable engineering conclusions” [75]. This statistical technique is con-
cerned with selecting experiments to be performed that generate the maxi-
mum amount of data with the minimal expenditure of time and money. The
concept of a DoE originated in 1918 when the director of the Rothamsted
Agricultural Experiment Station in the United Kingdom hired statistician
Ronald A. Fisher to analyze historical records of crop yields. The station
“had records extending over decades for crop yields from extensive plots
of land each of which was treated with the same particular fertilizer” [76].
Additionally, they had records of temperature, rainfall, and other environ-
mental factors over the same time period. This data, collected in a haphazard
manner, did not answer some critical questions despite the analysis tech-
nique applied. Fisher invented the design of experiments to standardize the
process by which data is collected for analysis [77]. Experimental design
techniques have also been refined by Yule [78], Box and Hunter [76], Scheffé
[79], Cox [80], and Taguchi [81].

While there are many different types of experimental designs with various
benefits and deficiencies, space-filling designs, which literally fill an n-dimen-
sional space, “should be used when there is little or no information about
the underlying effects of factors on responses” and are “useful for modeling
systems that are deterministic or near-deterministic” such as computer simu-
lations [82]. While random points can be used to fill a space, an alternative
scheme called “sphere-packing” is used to minimize the maximum distance
between any two points in an n-dimensional space, akin to placing billiard
balls into an n-dimensional box [83]. Mathematical techniques to assess this
distance have been developed extensively in the literature [84–86]. Accord-
ing to Cioppa, “A good space-filling design is one in which the design points
are scattered throughout the experimental region with minimal unsampled
regions; that is, the voided regions are relatively small” [87]. As a result, space-
filling designs can be effective for neural network models when the exact
location of inflection points in the design space is unknown. Other variations
on space-filling designs include Latin hypercube, uniform, minimum poten-
tial, maximum entropy, and integrated mean square optimal designs; how-
ever, unless the designer has familiarity with a specific type of experimental

Chapter five: Technology evaluation for system of systems 149

design, a generic sphere-packing design is often sufficient [83]. Although it
may seem that a neural network only needs a large number of random points,
Biltgen demonstrated that neural network surrogate models for system-of-
systems also require low independent variable correlation in the DoE for rea-
sonable model fits [2]. In contrast to the hand-designed experiments that were
prevalent through the 1970s, many computerized tools exist for the rapid cre-
ation of space-filling DoEs including several MATLAB® toolboxes, JMP® by
the SAS Institute, and Design-Expert® by Stat-Ease.

5.3.5 Process for executing the DoE and generating surrogates

The process for integrating the aforementioned steps to generate surrogates
usable for parametric technology evaluation for systems of systems is shown
in Figure 5.6. Step 1 is to integrate the various simulation tools used to evalu-
ate MoEs by mapping inputs to outputs, as illustrated in Figure 5.3, and iden-
tifying the ranges of important input parameters. Step 2 uses these ranges
to create an appropriate DoE table to act as the run matrix for the integrated
environment that is executed through the hierarchical modeling and simu-
lation environment in Step 3 to develop a matrix of output data. The sur-
rogation process in Step 4 uses the input DoE and the output data from the

(5) Exercise Surrogates
for Technology Evaluation

(4) Create and Validate
Surrogate Models

(3) Run Simulation and
Generate Output Data

(2) Create Run Matrix
Using DoE Techniques

(1) Link Simulations
Using Integration

Tool

 Run Matrix

Linked Suite of Tools

Surrogate(s)

Output Data

Figure 5.6 Process for generating surrogate models for parametric technology eval-
uation for systems of systems.

150 Patrick T. Biltgen

simulation to generate a suitable surrogate using one of the techniques previ-
ously mentioned. After confirming the validity of the surrogates to address
the problem at hand, Step 5 uses these surrogate models for parametric tech-
nology evaluation. The subsequent section describes how graphical analysis
tools are leveraged for this purpose.

5.4 Performing technology trade studies
with surrogate models

The previous sections described several enablers for rapid, high-fidelity
analysis of systems of systems:

 1. An integrated, hierarchical, physics-based modeling and simulation
environment with technology factors and system performance attri-
butes as the inputs and capability-based MoEs as the outputs

 2. Neural network surrogate models to enable accurate high-speed anal-
ysis of the problem space while retaining the fidelity of the original
modeling and simulation tools

 3. A computational tool that applies a rigorous and repeatable mathemat-
ical procedure to the generation of valid neural network equations

 4. Space-filling design of experiments to efficiently generate the data for
neural network regression

The next step is to use the integrated surrogate-enabled environment for
rapid parametric technology trade studies. In parametric design, surrogate
models are purposefully varied in a deterministic manner to examine the
impact of a specific change in design variables or technology factors on the
overall response. When validated surrogates of high-fidelity tools are used,
this procedure is identical to running the actual simulation as an analysis
tool, with the notable exception of decreased run time for an acceptable deg-
radation in accuracy and reduced degrees of freedom.

Recall that the surrogate model is simply an equation whose coefficients
are calculated using the aforementioned computational tools. Use of the
surrogate model for decision-making purposes is enabled by graphical tools
that exercise the surrogate across the range of the input variables and tech-
nology factors. One such tool is the Prediction Profiler, a feature introduced
in the JMP Statistical Package in the 1990s. An example of the use of sur-
rogate models for aircraft design using the Prediction Profiler is shown in
Figure 5.7.

Each box in the prediction profiler depicts the “profile trace” of each X vari-
able. These curved lines depict the change in the predicted response (Y-axis)
across the range of an input variable (X-axis) as all other X variables are held
constant and can be interpreted as a matrix of partial derivatives. The bold
numbers in the middle of each box on the Y-axis highlight the current value

Chapter five: Technology evaluation for system of systems 151

for each of the three responses, weight, cruise Mach, and range. Moving the
vertical dotted lines for any X variable recalculates the value of each of the
three responses instantaneously by evaluating the surrogate model. In addi-
tion to the calculation feature, the slopes of the profile traces indicate the rela-
tive contribution of each X variable to each response at the current settings
of all other variables and provide a measure of sensitivity. The prediction
profiler in Figure 5.7 divides the X variables into two categories: design vari-
ables and technology k-factors. The former set includes design variables such
as the aircraft cruise altitude (Alt), the thrust-to-weight ratio (T/W), wing area
(S), and the like. The concept of “k-factors” was introduced by Mavris, Mantis,
and Kirby to account for the fact that many computational tools “are typi-
cally based on regressed historical data, limiting or removing their applica-
bility to exotic concepts or technologies” [88]. k-Factors can be interpreted as
scale factors on the baseline values of discipline level metrics throughout the
simulation hierarchy and affect variables related to technologies. In the set
depicted here, technology factors that impact the lift-to-drag ratio, the thrust
specific fuel consumption* (TSFC), the aircraft profile drag, and the aircraft
empty weight are shaded in the figure. Using the prediction profiler’s calcula-
tion feature, technologists can quickly examine combinations of technology
parameters that yield beneficial system-level performance by exercising the
underlying surrogate models. From a sensitivity standpoint (by examining the
slopes of the profile traces), a reduction in k-TSFC appears to result in the most
significant change in aircraft range, and k-Drag reduction has the greatest ben-
efit on cruise Mach. This method for quantitative assessment for technology
factors has been demonstrated on several integrated engine/airframe combi-
nations [7,89] and also across a hierarchy of military systems of systems [60].

* For those unfamiliar with the terminology, TSFC is a measure of fuel consumed per
pound of thrust produced over time and is a typical technology metric for gas turbine
engines. High TSFC corresponds to low fuel economy.

k-Empty Weight

k-FactorsDesign Variables

W
ei

gh
t

Cr
ui

se
M

ac
h

Ra
ng

e

1000000

0

8

2.5

0

10000

20
00

0

80
00

0
0.

3 2 30 30
0

50
00

10
00

000

0.
6

0.
3

1.
5

1.
5

0.
9

1.
1

0.
22

30
0

4700

50000 0.79 165 2650 50000 1.09 0.9 1.23 1

Alt T/W W/S S Payload k-L/D k-TSFC k-Drag

0

487226

Figure 5.7 Prediction profiler for aircraft technology parameters [2].

152 Patrick T. Biltgen

Whether the tradeoff environment wraps around the full integrated
model or integrates individual surrogates at each hierarchical level, when
the concept of the prediction profiler is extended to the systems-of-systems
construct, the tradeoff environment takes the form depicted in Figure 5.8.
Here, the Unified Tradeoff Environment proposed by Mavris, Baker, and
Schrage is extended to a multilevel construct with discrete system and tech-
nology options where the outputs of each lower level act on the design vari-
ables at the next level [45]. At each level, the technology variables can be
adjusted parametrically using the inputs to the surrogates, and different sys-
tem architectures identify which technology suites and system concepts are
included at the systems-of-systems level to provide capabilities. Using such
an environment, it is possible to evaluate the impact of requirements against
MoPs or MoEs, MoPs against MoEs, technology against MoPs for individual
systems, or a portfolio of technologies across MoEs at the system-of-systems
level in a rapid and traceable manner.

The concept of the profiler can also be extended to two and three dimen-
sions using the JMP software. The same neural network equations can be
used to understand trends in the technology space and how they relate to
user-imposed constraints and scenarios. For the long-range bomber exam-
ple, a parametric three-dimensional contour profiler for the systems of sys-
tems–level MoE “Targets Killed” is shown in Figure 5.9. In this case, the
X and Y axes are speed and TSFC, respectively, but can be changed using
the radio buttons to the right. The slide bars and text boxes to the right
of the figure show the current input variable values for the baseline case.
Manipulation of the slide bars changes the input values to the surrogate
model and reevaluates the shape of the contour across the X and Y variables
of speed and TSFC.

To illustrate how the surrogate models enable dynamic visualization, Fig-
ure 5.10 depicts the change in the contour when thrust-to-weight ratio (T/W)
is increased to its maximum value. Here, the magnitude of the response

Requirements

k-
fa

ct
or

s

k-
fa

ct
or

s

k-
fa

ct
or

s
M

oP
s

M
oP

s

M
oE

s

MoP’s act on
design variables at

the SoS level

Design Vars TechnologiesRequirements Design Vars TechnologiesRequirements Design Vars Technologies

TechnologiesTechnologies Design VariablesDesign Variables RequirementsRequirements

TechnologiesDesign VariablesRequirements

Subsystem Level (Munition)Subsystem Level (Avionics)Subsystem Level (Propulsion)

System Level (System A) System Level (System B)

Systems-of-Systems Level
Capabilities

Figure 5.8 Multilevel linkage of surrogate models.

Chapter five: Technology evaluation for system of systems 153

increases at the optimum speed and TSFC and decreases slightly for low-
TSFC, high-speed concepts. Note also that there are some regions where the
contour is intersected by the grey meshed area, notably at high speed and
high TSFC in the lower left corner. For these settings of the input variables,
no viable aircraft configurations can successfully complete the required mis-
sion. Finally, the contour profiler can also be used to assess sensitivities by

Baseline Case

0.5
TSFC

SAM Density

Speed

Ta
rg

et
s K

ill
ed

TSFC

500

1000

2000

2500

0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

10

20

30

40

50

1500

0

Location of Max
Targets Killed

Enemy Radar Pwr
Munition Speed

Speed
Payload

Munition Range
RCS

CL
CD
WS

T/W
EWR

Targets Killed
X Y

GTOW

0.5

1.50

100
0.05

0.52
0.48

50
450000

60
1910

162500

17500

Figure 5.9 Three-dimensional contour profiler, baseline case [2].

Increased T/W

0.5
TSFC

SAM Density

Speed

Ta
rg

et
s K

ill
ed

TSFC

500

1000

2000

2500

0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

10

20

30

40

50

1500

0

Same Location
Greater Magnitude

Enemy Radar Pwr
Munition Speed

Speed
Payload

Munition Range
RCS

CL
CD
WS

T/W
EWR

Targets Killed
X Y

GTOW

0.5

1.50

100
0.05

0.75
0.48

50
450000

60
1910

162500

17500

Figure 5.10 Three-dimensional contour profiler, increased T/W [2].

154 Patrick T. Biltgen

comparing the variation in the Z-axis response as the design variables move
in either the X or Y dimensions. Here technologies which reduce TSFC have
much greater benefit than those that increase speed, which actually penal-
ize the “Targets Killed” MoE beyond a certain value. It is also interesting to
note that the magnitude of the impact of TSFC-reducing technologies varies
across a spectrum of vehicle speeds. In this example, there is an “optimum
speed” for the baseline vehicle around 750 knots at which TSFC reduction
appears to have a maximum benefit on the “Targets Killed” metric. To obtain
a true estimate of the impact of these technology factors, this exercise must
be repeated across multiple MoEs and multiple scenarios.

The parametric exercise of surrogate models using the graphical features
of the JMP profiler are most appropriately termed “exploratory analysis,”
which Davis notes is “particularly useful for gaining a broad understanding
of the problem domain before dipping into details” [90]. Other analysis tools
have moved to incorporate graphical data displays including the Prefuse
Visualization Toolkit [91] and the Phoenix Integration® Visualization Pak for
ModelCenter [92]. Exploratory analysis is also useful for eliminating regions
of the technology space which provide little value at the systems-of-systems
level due to insignificant contribution to identified MoEs.

While surrogate models provide value for quick-look exploratory analysis
studies, the techniques described above are primarily used for assessing a
desired portfolio of technologies or answering the question “what does this
technology do?” This approach can be referred to as a bottom-up type of
gap analysis: if thresholds are set on the MoEs, technology parameters can
be changed to assess how close a proposed solution comes to meeting the
thresholds. An alternative approach would be to set objectives at the sys-
tems-of-systems level and identify all the technology sets that meet those
objectives. In contrast to the bottom-up approach, this method answers the
question “what technologies do this?” and can be referred to as a top-down
analysis or “inverse design.” Exploratory design offers a way to perform
rapid parametric trades using a brute force approach or one-variable-at-a-
time optimization, while inverse design uses probabilistic techniques to par-
tially automate the search for an elegant solution to the same problem.

In practice, the notion of inverse design is not easily addressed by comput-
erized analysis tools: they run in an inputs-to-outputs mode, not the other
way around. One approach to address this might be to create a surrogate
model (a mathematical function that maps inputs to outputs) and invert the
surrogate. Unfortunately, direct mathematical inversion of the surrogate
models to give the inputs as a function of a particular response is a very
difficult problem. The inverse problem is nonunique, because any particu-
lar response often depends on multiple inputs; that is, the inverse mapping
is one-to-many. Direct inversion is also complicated by nonlinearities in the
surrogate models, which would require the identification of many multiple
roots using branching techniques. While mathematically possible, a more
practicable approach is to simply solve the forward problem over a span of

Chapter five: Technology evaluation for system of systems 155

the input space and then to use this information to identify trends in the
inputs that correspond to particular response criteria. This is the intent of a
method known as Filtered Monte Carlo, first introduced by Kuhne et al. in
2005 [93]. In this approach, a large number of probabilistic cases are generated
using Monte Carlo simulation (MCS), but those points that do not meet user-
defined thresholds are discarded a posteriori. Essentially, inverse design is
accomplished by performing forward design many times using probabilistic
techniques. Here again, the surrogate models enable advanced analysis, since
an MCS on the full analysis tool would require a prohibitively long time.

To demonstrate this technique, using the aforementioned surrogate mod-
els as the analysis engine, a uniform distribution is defined across the range
two input parameters (speed and TSFC) to flood the design space with all
possible technology sets within a discretized bound. Several thousand
design points can be generated in seconds due to the rapid execution speed
of the neural network equations. As opposed to the continuous surfaces
observed in the exploratory analysis techniques previously described, the
inverse design technique can be manifested in a multivariate scatterplot
matrix as shown in the left side of Figure 5.11.

In this simplified example, only two MoPs (speed and TSFC) are shown
against one MoE, “Targets Killed.” The scatterplot matrix depicts each of the
potential Y by X plots between the variables across the simulation hierarchy.
The views shown are:

 1. Targets Killed vs. Speed
 2. Targets Killed vs. TSFC
 3. Speed vs. TSFC

This trade shows how one variable at the technology factor, MoP, and
MoE level can be related through physics-based surrogate models. Each of
the points in Figure 5.11 represents an individual design that has been exe-
cuted through the neural network equation from the subsystem to systems-
of-systems level. Box 3 shows the two-dimensional uniform flood of points
resulting from the MCS across speed and TSFC. Typically the lower-level
parameters have a uniform scattering across their range unless other distri-
bution types are used in the MCS. In contrast to the uniform spread in Box
3, both Boxes 1 and 2 exhibit a pattern. This is due to the fact that “Targets
Killed” is calculated using the neural network. As with the other graphical
examples in this chapter, the multivariate scatterplot matrix shows (Box 1)
that there is a particular speed for which targets killed is maximized, and
the MoE generally decreases as TSFC increases.

The right side of Figure 5.11 shows how the multivariate scatterplot matrix
differs in character by applying a filter on MoEs using the Filtered Monte Carlo
technique. Possible filters are highlighted by establishing color-coded thresh-
olds in Box 1 of Figure 5.11 representing constraints on the desired number
of targets killed. For example, if the highest threshold is used, indicated by

156 Patrick T. Biltgen

TS
FC

Sp
ee

d
32

1

Speed

Targets Killed

Speed

Targets Killed

TSF
C

Le
ft

TS
FC

Re
gi

on
 o

f B
es

t
So

lu
tio

n
(S

pe
ed

 v
s.

TS
FC

)

Ap
pl

ic
at

io
n

of
 F

ilt
er

(9
0%

 T
ar

ge
ts

 K
ill

ed
)

Sp
ee

d
32

1

Speed

Targets Killed

Speed

Targets Killed

TSF
C

Ri
gh

t

Fi
gu

re
 5

.1
1

U
si

ng
 th

e
m

u
lt

iv
ar

ia
te

 s
ca

tt
er

pl
ot

 m
at

ri
x

an
d

 F
ilt

er
ed

 M
on

te
 C

ar
lo

 fo
r

in
ve

rs
e

de
si

gn
.

Chapter five: Technology evaluation for system of systems 157

eliminating all points below the dashed line, only a few points in the left-
center of Box 3 remain after the noncompliant points are discarded. The Fil-
tered Monte Carlo technique is analogous to throwing ping pong balls into a
box: each toss is a single case, and any balls that land outside the box are not
considered. The number of points included in the final sample varies depend-
ing on the size of the box, essentially the constraints applied as filters on the
process. If the surrogate models used to perform this type of analysis are inac-
curate, valid points may miss the box, and invalid points may be included in
the sample size, underscoring the need for accuracy in surrogate generation.
In this allegorical example, the farther back you stand, the harder it is to hit
the target. The difficulty of hitting finite targets increases when more analyses
are included in the systems-of-systems simulation hierarchy, because there is
more opportunity for the results of one analysis to be overshadowed by the
results of another.

The use of probabilistic techniques in conjunction with surrogate mod-
els provides an unprecedented ability to rapidly play “what-if?” games and
assess the benefit of technologies and their interactions under different con-
ditions. These trades are extraordinarily time consuming when surrogates
are not used for exploratory analysis. In most cases, the time taken to create
the surrogate models is negligible when compared to the benefits of using
them for parametric bottom-up analysis and probabilistic top-down inverse
design and solution discovery.

5.5 Summary
The techniques outlined in this chapter for hierarchical modeling and
simulation, surrogate model creation using artificial neural networks, mul-
tidimensional visualization of the problem, and inverse design using prob-
abilistics can be used to quantify the benefit of potential technologies on
systems of systems–level MoEs using physics-based analyses. In the sim-
plified examples used in this chapter, technologies which reduced the fuel
consumption of a notional aircraft solution were of inherently more value
to the identified MoEs than technologies used to increase vehicle speed.
Further dimensions such as cost, risk, and technology readiness can also
be examined to make cost/benefit decisions on a portfolio of technologies
across one or more scenarios, and the most valuable technology suites can be
further assessed using traditional analysis methods and systems engineer-
ing techniques.

The surrogate modeling technique is extremely valuable for increasing
the speed of the evaluation process and enabling exploratory analysis that
would otherwise have been impossible due to the long run times of the sim-
ulation tools used. It should be clear that the optimization of the surrogates
to find a single ideal point may be of less value than using the surrogates to
eliminate inferior regions of the design space and understand sensitivities.
Perhaps surrogates are best used to identify where the answer is not so that

158 Patrick T. Biltgen

resources can be focused toward additional analysis in promising regions
of the design/technology space. While no technique for technology evalua-
tion is perfect, the surrogate model-based approach contributes to all of the
criteria identified in the introduction, most notably traceability, reusability,
affordability, and agility.

One critical observation of the aforementioned techniques is that the
“answers” to technology-related questions are not readily apparent. In fact,
these techniques underscore the fact that an understanding of the vast
opportunity space and enumeration of technology sensitivities is of inher-
ently more value than a single optimized point. This is due primarily to the
fact that systems of systems rarely have a “design point.” The long time-
scales for development, uncertainties arising from many factors, and the fact
that systems engineering is never finished make it extraordinarily difficult
to forecast the exact performance of a suite of technologies on a system of
systems. However, with enough information from subject matter experts
and correctly constructed models of the appropriate fidelity, the methods in
this chapter can be extended using probabilistic techniques to account for
these sources of uncertainty. Future research is aimed at linking the results
of parametric analysis to roadmapping tools for technology maturation
through test and experimentation.

Finally, the importance of multifidelity or variable-fidelity models cannot
be underemphasized. The level of fidelity used in the tool suite across the
system-of-systems hierarchy shown in Figure 5.1 should be tuned to address
a set of analysis questions and should be appropriately allocated toward the
regions of the greatest uncertainty and most technological promise. The fidel-
ity level should also be set to answer the analysis questions within the time
and cost constraints allowed; analysis should not be high fidelity, it should
be right fidelity. This implies that the process enumerated in this chapter is
an iterative one that relies on revisitation of the problem with subject matter
experts and decision makers to arrive at the “best” decisions for technology
infusion into systems of systems.

References
 1. Betz, F. 1998. Managing Technological Innovation: Competitive Advantage from

Change. John Wiley and Sons, Inc. New York.
 2. Biltgen, P. T. 2007. A Methodology for Capability-Based Technology Evaluation

for Systems-of-Systems. Ph.D. thesis, Georgia Institute of Technology.
 3. Luce, B. R. 1993. Medical Technology and its Assessment. Del Mar Publishers,

Albany, NY.
 4. United States Air Force Scientific Advisory Board. 1996. New World Vistas: Air

and Space Power for the 21st Century. United States Air Force Scientific Advisory
Board. Washington, DC.

Chapter five: Technology evaluation for system of systems 159

 5. Gorn, M. H. 1997. Technological forecasting and the Air Force. In Technology
and the Air Force, a Retrospective Assessment, ed. J. Neufeld, G. M. Watson Jr., and
D. Chenoweth, 41–48. Air Force History and Museums Program, United States
Air Force, Washington, DC.

 6. Department of Defense. 1994. Rotary Wing Vehicle Technology Development
Approach (TDA) 4.0, Technology Efforts and Objectives (TEO), U.S. Depart-
ment of Defense.

 7. Kirby, M. R. 2001. A Methodology for Technology Identification, Evaluation,
and Selection in Conceptual and Preliminary Aircraft Design, Ph.D. thesis,
Georgia Institute of Technology.

 8. Withrow, M. 2005. AFRL demonstrates quantitative technology assessment.
news@afrl, July 2005.

 9. Zeh, J. 2005. Net-Centric Modeling, Simulation and Analysis. Air Force Research
Laboratory, Presented at the 2005 FLAMES User’s Conference, June 2005.

 10. International Council on Systems Engineering (INCOSE) Technical Board. 2006.
Systems Engineering Handbook. International Council on Systems Engineering,
INCOSE-TP-2003-002-03, Version 3.0, June 2006.

 11. Department of Defense. 2004. Defense Acquisition Guidebook. U.S. Depart-
ment of Defense.

 12. Berry, B. J. L. 1964. Cities as systems within systems of cities. Papers of Regional
Sciences Association 13:147–163.

 13. Schwartz, N. A. 2005. Joint Capabilities Integration and Development System,
Chairman of the Joint Chiefs of Staff Instruction CJCSI 3170.01E.

 14. Krygiel, A. J. 1999. Behind the Wizard’s Curtain: An Integration Environment
for a System of Systems. DoD C4ISR Cooperative Research Program.

 15. United States Air Force Scientific Advisory Board. 2005. Report on System-of-
Systems Engineering for Air Force Capability Development, Executive Sum-
mary and Annotated Brief, tech. rep., SAB-TR-05-04, United States Air Force
Scientific Advisory Board.

 16. Maier, M. W. 2006. Architecting principles for systems of systems. In Proceed-
ings of the Sixth Annual International Symposium, International Council on
Systems Engineering, Boston, MA.

 17. Pohlmann, L. D. 2006. Is systems engineering for systems-of-systems really any
different? PowerPoint presentation at the INCOSE International Symposium,
Orlando, FL.

 18. Crisp, H. and Ewald, B. 2005. Capability engineering for systems of systems: a
coalition perspective. INCOSE Insight 8(1):3, 7.

 19. U.S. Department of Defense. 2001 (amended 2008). DoD Dictionary, Defense
Technical Information Center, Joint Publication 1-02, Online at http://www.
dtic.mil/doctrine/jel/doddict, Updated April 14, 2006.

 20. The American Heritage Dictionary of the English Language, 4th Edition. Houghton
Mifflin Company, 2000.

 21. Definition: Simulation, Online at http://www.webopedia.com/TERM/S/simu-
lation.html.

 22. National Academy of Sciences. 2002. Modeling and Simulation in Manufacturing
and Defense Acquisition: Pathways to Success. National Academies Press, Com-
mittee on Modeling and Simulation Enhancements for 21st Century Manufac-
turing and Defense Acquisition, National Research Council.

160 Patrick T. Biltgen

 23. National Center for Advanced Technologies. 1993. Technology For Affordabil-
ity: A Report on the Activities of the Working Groups—Integrated Product/
Process Development (IPPD), Simplified Contracting, Dual-Use Manufactur-
ing, tech. rep., National Center for Advanced Technologies.

 24. Acquisition Reform Office, ASN (RD&A), Department of the Navy. 1997. Work
Book for Video Series on Integrated Product And Process Development, National Cen-
ter for Advanced Technologies.

 25. National Science Foundation. 2006. Simulation-based engineering science:
revolutionizing engineering science through simulation. Tech. rep., National
Science Foundation.

 26. Kroo, I. 1997. Multidisciplinary optimization applications in preliminary
design—status and directions. Invited Paper, AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference and Exhibit, 38th,
and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee, FL.

 27. Box, G. E. P. and Wilson, K. B. 1951. On the experimental attainment of opti-
mum conditions (with discussion). Journal of the Royal Statistical Society Series B
13(1):1–45.

 28. Tai, J. C., Mavris, D. N., and Schrage, D. P. 1995. An application of response sur-
face methodology to the design of tipjet driven stopped rotor/wing concepts.
Presented at the 1st AIAA Aircraft Engineering, Technology, and Operations
Congress, Anaheim, CA., September 19-21, 1995.

 29. Skillen, M. and Crossley, W. 2005. Developing response surface based wing
weight equations for conceptual morphing aircraft sizing. AIAA-2005-1960,
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference and 13th AIAA/ASME/AHS Adaptive Structures Con-
ference, Austin, TX.

 30. Carty, A. 2002. An approach to multidisciplinary design, analysis and opti-
mization for rapid conceptual design. AIAA-2002-5438, Presented at the 9th
AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Atlanta, GA.

 31. Jianjiang, C., Renbin, X., and Yiafang, Z. 2005. A response surface based hierar-
chical approach to multidisciplinary robust optimization design. International
Journal of Advanced Manufacturing Technology 26(4):301–309.

 32. Stewart, P., Fleming, P. J., and MacKenzie, S. A. 2002. On the response surface
methodology and designed experiments for computational intensive distrib-
uted aerospace simulations. In Proceedings of the 2002 Winter Simulation Confer-
ence, Ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, 476–482.

 33. Chen, W., Allen, J. K., and Mistree, F. 1995. Robust concept exploration by com-
bining Taguchi and response surface models. In Proceedings of the 36th Struc-
tures, Structural Dynamics, and Materials Conference, New Orleans, LA.

 34. Chen, W., Allen, J. K., Mistree, F., and Tsui, K. L. 1995. Integration of response
surface methods with the compromise decision support problem in developing
a general robust design procedure. In Proceedings of the 21st ASME Design Auto-
mation Conference, Boston, MA.

 35. Myers, R. H. and Montgomery, D. C. 2002. Response Surface Methodology: Process and
Product Optimization Using Designer Experiments, 2nd Edition, Wiley, New York.

 36. Koch, P. N., Mavris, D. N., and Mistree, F. 1998. Multi-level, partitioned response
surfaces for modeling complex systems. Presented at the 7th AIAA/USAF/
NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
St. Louis, MO.

Chapter five: Technology evaluation for system of systems 161

 37. Roth, B., Mavris, D., and Elliott, D. 1998. A probabilistic approach to UCAV engine
sizing. Presented at the 34th Joint Propulsion Conference, Cleveland, OH.

 38. Lee, K., and Lee, T. H. 2001. Fuzzy multi-objective optimization of an automotive
seat using response surface model and reliability method. Presented at the 4th
World Congress of Structural and Multidisciplinary Optimization, Dalian, China.

 39. Nixon, J. and Mavris, D. 2002. A multi-level, hierarchical approach to technol-
ogy selection and optimization. Presented at the 8th AIAA/NASA/USAF/
ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA,
Atlanta, GA.

 40. Mavris, D. N. and Kirby, M. R. 1999. Technology identification, evaluation, and
selection for commercial transport aircraft. Presented at the 58th Annual Con-
ference of Society of Allied Weight Engineers.

 41. Mavris, D. N, Briceno, S. I., Buonanno, M., and Fernandez, I. 2002, A paramet-
ric exploration of supersonic business jet concepts utilizing response surfaces.
Presented at the 2nd AIAA ATIO Forum, Los Angeles, CA.

 42. Olson, E. D. and Mavris, D. N. 1997. Development of response surface equations
for high-speed civil transport takeoff and landing noise. Presented at the 2nd
World Aviation Congress and Exposition, Anaheim, CA.

 43. Hosder, S., Watson, L. T., Grossman, B., Mason, W. H., Kim, H., Haftka, R., and
Cox, S. E. 2001. Polynomial response surface approximations for the multidis-
ciplinary design optimization of a high speed civil transport. Optimization and
Engineering 2:431–452.

 44. Mavris, D. N., Soban, D. S., and Largent, M. C. 1999. An application of a technology
impact forecasting (TIF) method to an uninhabited combat aerial vehicle. Pre-
sented at the 4th World Aviation Congress and Exposition, San Francisco, CA.

 45. Mavris, D. N., Baker, A. P., and Schrage, D. P. 2000. Simultaneous assessment
of requirements and technologies in rotorcraft design. Presented at the 56th
Annual Forum of the American Helicopter Society, Virginia Beach, VA.

 46. Schrage, D. 1999. Technology for rotorcraft affordability through integrated prod-
uct/process development (IPPD). Alexander A. Nikolsky Lecture, presented at
the American Helicopter Society 55th Annual Forum, Montreal, Canada.

 47. Mavris, D. N., Baker, A. P., and Schrage, D. P. 2000. Technology infusion and
resource allocation for a civil tiltrotor. Proceedings of the AHS Vertical Lift
Aircraft Design Conference, San Francisco, CA.

 48. Biltgen, P. T. et al. 2004. Proteus: A Long Range Liquid Booster Target Vehicle,
tech. rep., AIAA Missile Systems Technical Committee Graduate Strategic Mis-
sile Design Competition, Final Report, 2004.

 49. Ender, T. R., McClure, E. K., Mavris, D. N. 2002. A probabilistic approach to the
conceptual design of a ship-launched high speed standoff missile. Presented at
the AIAA 2002 Missile Sciences Conference, Monterey, CA.

 50. Kumpel, A. E., Barros, P. A., and Mavris, D. N. 2002. A quality engineering
approach to the determination of the space launch capability of the peace-
keeper ICBM utilizing probabilistic methods. Presented at the Missile Sciences
Conference, Monterey, CA.

 51. Mavris, D. 2004. Multi-Disciplinary Design Optimization Support for Sur-
face Ship Projects, tech. rep., Georgia Institute of Technology, School of Aero-
space Engineering.

 52. Mavris, D. 2004. Multidisciplinary Optimization of Naval Ship Design and Mission,
tech. rep., Georgia Institute of Technology, School of Aerospace Engineering.

 53. Mavris, D. 2004. Application of Parametric Analysis to Aircraft Bus Timing,
tech. rep., Georgia Institute of Technology, School of Aerospace Engineering.

162 Patrick T. Biltgen

 54. Fitzgerald, C. J., Weston, N. R., Putnam, Z. R., and Mavris, D. N. 2002. A con-
ceptual design environment for technology selection and performance opti-
mization for torpedoes. Presented at the 9th Multi-Disciplinary Analysis and
Optimization Symposium, Atlanta, GA.

 55. Frits, A. P. 2005. Formulation of an Integrated Robust Design and Tactics Opti-
mization Process for Undersea Weapon Systems. Ph.D. thesis, Georgia Institute
of Technology.

 56. DeLaurentis, D., Lim, C., Kang, T., Mavris, D. N., and Schrage, D. 2002. System-
of-systems modeling for personal air vehicles. Presented at the 9th AIAA/
ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
GA.

 57. Garcia, E. 2003. Development of a Framework for the Assessment of Capacity
and Throughput Technologies within the National Airspace System. Ph.D. the-
sis, Georgia Institute of Technology.

 58. Lewe, J. 2005. An Integrated Decision-Making Framework for Transportation
Architectures: Application to Aviation Systems Design. Ph.D. thesis, Georgia
Institute of Technology.

 59. Soban, D. S. and Mavris, D. N. 2001. The need for a military system effective-
ness framework—the system of systems approach. AIAA-2001-5226, presented
at the 1st Aircraft, Technology Integration, and Operations Forum, Los Ange-
les, CA.

 60. Soban, D. S. 2001. A Methodology for the Probabilistics Assessment of System
Effectiveness as Applied to Aircraft Survivability and Susceptibility. Ph.D. the-
sis, Georgia Institute of Technology.

 61. McCulloch, W. S. and Pitts, W. H. 1943. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics 5:115–133.

 62. Picton, H. 1994. Introduction to Neural Networks. Macmillan Press, New York.
 63. Stanley, J. 1990. Introduction to Neural Networks. Scientific Software, Pasadena, CA.
 64. Daberkow, D. D. and Mavris, D. N. 1998. New approaches to conceptual and

preliminary aircraft design: a comparative assessment of a neural network
formulation and a response surface methodology. Presented at the 3rd World
Aviation Congress and Exposition, Anaheim, CA.

 65. Johnson, C. and Schutte, J. 2005. Basic Regression Analysis for Integrated Neural
Networks (BRAINN) Documentation, Version 1.2. Georgia Institute of Technol-
ogy, Atlanta, GA.

 66. Rojas, R. 1996. Neural Networks—A Systematic Introduction. Springer-Verlag, Ber-
lin, New York.

 67. Biltgen, P. T. 2006. Using FLAMES to enable capability-based design and tech-
nology evaluation. Presented at the 2006 FLAMES User Group Conference,
Huntsville, AL.

 68. Barros, P. A., Kirby, M. R., and Mavris, D. N. 2004. Impact of sampling tech-
nique selection on the creation of response surface models. Presented at the
2004 SAE World Aviation Congress, AIAA 2004-01-3134.

 69. Engler, W. O. 2005. Creation of a Set of Parametric Engine Models Utilizing
Neural Networks in a Systems-of-Systems Context. AE8900 Special Topics
Report, Georgia Institute of Technology, School of Aerospace Engineering.

 70. Rai, M. M. 2001. A rapid aerodynamic design procedure based on artificial neu-
ral networks. AIAA-2001-0315, presented at the 39th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, NV.

Chapter five: Technology evaluation for system of systems 163

 71. Ender, T. R. 2006. A System-of-Systems Approach to the Design of an Air-
Defense Weapon. Ph.D. thesis, Georgia Institute of Technology.

 72. Saravanan, N., Duyar, A., Guo, T.-H., and Merrill, W. C. 1994. Modeling space
shuttle main engine using feed-forward neural networks. Journal of Guidance,
Control, and Dynamics 17(4):641–648.

 73. Kranzusch, K. M. 2006. Abort determination with non-adaptive neural net-
works for the Mars Precision Landers. AIAA-2006-0149, presented at the 44th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.

 74. Mavris, D. N., Biltgen P. T., Ender, T. R., and Cole, B. 2005. Technology assess-
ment and capability tradeoff using architecture-based systems engineering
methodologies. Presented at the 1st International Conference on Innovation
and Integration in Aerospace Sciences, Queens University Belfast, Northern
Ireland, UK..

 75. NIST/SEMATECH. 2006. e-Handbook of Statistical Methods. Online at http://
www.itl.nist.gov/div898/handbook/, Updated July 18, 2006.

 76. Box, G. E. P., Hunter, J. S., and Hunter, W. G. 2005. Statistics for Experimenters:
Design, Innovation and Discovery, 2nd Edition. John Wiley and Sons, New York.

 77. Fisher, R. A. 1921. Studies in crop variation. I. An examination of the yield of
dressed grain from broadbalk. Journal of Agricultural Science 11:107–135.

 78. Yule, G. U. 1969. An Introduction to the Theory of Statistics, MacMillan Publishing
Company, New York.

 79. Scheffe, H. 1959. The Analysis of Variance. John Wiley and Sons, New York.
 80. Cochran, W. G., and Cox, G. M. 1950. Experimental Designs, Wiley, New York.
 81. Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Prod-

ucts and Processes, Hong Kong: Asian Productivity Organization.
 82. Mathworks. 2006. Creating Space-Filling Designs, Online at http://www.math-

works.com/access/helpdesk/help/toolbox/mbc/mbc gs/f3- 7640.html.
 83. Sall, J. et al. 2005. JMP® Design of Experiments. SAS Institute, Inc., Cary, NC.
 84. Fang, K. T. and Wang, Y. 1994. Number-Theoretic Methods in Statistics, Chapman

and Hall, London.
 85. Johnson, M., Moore, L., and Ylvisaker, D. 1990. Minimax and maximin distance

designs. Journal of Statistical Planning and Inference 26:131–148.
 86. Ye, K. Q. 1998. Orthogonal column Latin hypercubes and their application in

computer experiments. Journal of the American Statistical Association Theory and
Methods 93(444):1430–1439.

 87. Cioppa, T. M. 2002. Efficient Nearly Orthogonal and Space-Filling Experimen-
tal Designs for High-Dimensional Complex Models. Ph.D. thesis, Naval Post-
graduate School, Monterey, CA.

 88. Mavris, D. N., Mantis, G., and Kirby, M. R. 1997. Demonstration of a probabi-
listic technique for the determination of economic viability. SAE-975585, pre-
sented at the 2nd World Aviation Congress and Exposition, Anaheim, CA.

 89. Buonanno M. and Mavris, D. 2005. A new method for aircraft concept selection
using multicriteria interactive genetic algorithms. AIAA-2005-1020, presented
at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.

 90. Davis, P. K. 2000. Exploratory analysis enabled by multiresolution, multiper-
spective modeling. In Proceedings of the 2000 Winter Simulation Conference, ed.
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick. A preliminary version
appeared in Proc. SPIE Vol. 4026, pp. 2–15, Enabling Technology for Simulation Sci-
ence IV, ed. A. F. Sisti. SPIE-International Society for Optical Engine.

164 Patrick T. Biltgen

 91. Berkeley Institute of Design. 2007. Prefuse Visualization Toolkit. Online at
http://prefuse.org, Last Accessed August 28, 2007.

 92. Phoenix Integration. 2007. VisualizationPak, White Paper, Phoenix Integration,
Philadelphia, PA.

 93. Kuhne, C., Wiggs, G., Beeson, D., Madelone, J., and Gardner, M. 2005. Using
Monte Carlo simulation for probabilistic design. Proceedings of the 2005 Crys-
tal Ball User Conference.

165

chapter six

Enterprise system of systems
George Rebovich, Jr.

Contents

6.1 Classical systems engineering ... 166
6.2 System of systems engineering ... 167

6.2.1 Classical system of systems engineering 167
6.2.2 Systems of systems: a changing landscape 168
6.2.3 SoS system engineering: emerging principles 169
6.2.4 SoS systems engineering: toward a new view 170

6.3 Enterprise systems engineering .. 174
6.3.1 Enterprise and enterprise capabilities .. 175
6.3.2 Evolution of enterprise capabilities ... 176
6.3.3 Enterprise engineering ... 178
6.3.4 Achieving outcomes through interventions 179
6.3.5 A framework for evolving enterprise capabilities 181
6.3.6 Guiding and monitoring enterprise evolution 182
6.3.7 An example enterprise level engineering process 184
6.3.8 Governing and measuring enterprise capabilities 184
6.3.9 The enterprise market: changing the risk balance

with service-oriented architectures .. 186
6.4 Summary and conclusions ... 187
References .. 189

The 21st century is an exciting time for the field of systems engineering.
Advances in our understanding of the traditional discipline are being made.
At the same time new modes of systems engineering are emerging to address
the engineering challenges of systems-of-systems (SoS) and enterprise sys-
tems. Even at this early point in their evolution, these new modes are evincing
their own principles, processes and practices. Some are different in degree
than engineering at the system level while others are different in kind.

While it is impossible to predict how the traditional and new forms of
systems engineering will evolve, it is clear even now that there is a long and
robust future for all three. Increases in technology complexity have led to

166 George Rebovich, Jr.

new challenges in architecture, networks, hardware and software engineer-
ing, and human systems integration. At the same time, the scale at which sys-
tems are engineered is exceeding levels that could only have been imagined
a short time ago. As a consequence, all three forms of systems engineering
will be needed to solve the engineering problems of the future, sometimes
separately but increasingly in combination.

This chapter defines three modes of systems engineering, discusses the
challenge space each addresses, describes how they differ from and com-
plement each other, and suggests what their interrelationships should be in
solving engineering problems of the future.

6.1 Classical systems engineering
Classical systems engineering is a sequential, iterative development process
used to produce systems and subsystems, many of which are of unprece-
dented technical complication and sophistication. The INCOSE (ANSI/EIA
632) Systems Engineering process is a widely recognized representation of
classical systems engineering [1].

An implicit assumption of classical systems engineering is that all rel-
evant factors are largely under the control of or can be well understood and
accounted for by the engineering organization, the system engineer, or the
program manager, and this is normally reflected in the classical systems
engineering mindset, culture, and processes.

Within most government agencies, systems are developed by an acquisi-
tion community through funded programs using classical system engineer-
ing methods and processes. The programs create a plan to develop a system
and execute to the plan. The classical process works well when the system
requirements are relatively well known, technologies are mature, the capa-
bilities to be developed are those of a system, per se, and there is a single
individual with management and funding authority over the program. It is
estimated that the United States Department of Defense manages hundreds
of systems of record being developed or modernized through funded pro-
grams of record using classical systems engineering methods and processes,
as depicted in Figure 6.1.

There are numerous variations on this classical systems engineering
approach, including build-a-little, test-a-little incremental or spiral devel-
opments, to mitigate uncertainties in long-range requirements, technology
maturity, or funding of the system.

The prevailing business model in most government development or mod-
ernization acquisition programs is to contract for the promise of the future
delivery of a system that meets specified performance requirements, con-
tract cost, and delivery schedule. These program parameters are set at con-
tract award, and they form the basis for success or failure of the program
and the individuals working on the program. This model of success shapes
the organization’s engineering processes, management approaches and the

Chapter six: Enterprise system of systems 167

motivations of program staff to place emphasis on tracking the progress of
program parameters, uncovering deviations, and taking corrective action
to get back on course to deliver according to the contract. This is normally
accomplished through milestone reviews and other events that illuminate
progress in the framework of the system performance requirements, cost,
and delivery schedule.

6.2 System of systems engineering
6.2.1 Classical system of systems engineering

The classical approach to developing multisystem capabilities is through an
executive oversight agency that aligns and synchronizes the development of
individual systems to develop a capability that is greater than the sum of the
individual systems. This is depicted in Figure 6.2.

This approach works well for systems of systems (SoSs) comprised of indi-
vidual systems that are being developed together as a persistent, coherent,
unified whole, particularly when the identity and reason for being of the
individual elements of these SoSs are primarily tied to the overarching mis-
sion of the SoS, the operational and technical requirements are relatively well
known, the implementation technologies are mature, and there is a single
program executive with comprehensive management and funding author-
ity over the constituent systems. Examples of these types of SoS include the
Atlas Intercontinental Ballistic Missile system, an air defense system, and
the United States National Air and Space Administration’s original Apollo
Moon Landing capability.

PoR1

PoRn

PoR716

SoR1

Cl
as

sic
al

 S
E

an
d

M
an

ag
em

en
t

M
an

ag
em

en
t v

ia
 M

ile
st

on
e R

ev
ie

w
s

System
Capabilities

SoR2PoR2

SoR716

PoR: Program of Record SoR: System of Record

SoRn

Figure 6.1 Classical approach to developing system capabilities.

168 George Rebovich, Jr.

The classical approach to SoS development or modernization works for
this category of SoS because it satisfies all the essential conditions and attri-
butes of engineering at the system level, only it is larger. The community
culture, organizational norms, rules of success, engineering and business
processes, and best practices in this category of SoS either are essentially the
same as at the system level or they scale appropriately.

6.2.2 Systems of systems: a changing landscape

In recent years SoS development has focused on engineering of capabilities
across multiple existing systems. Capabilities, like the United States Army
Future Combat System in which both the SoS and its constituent systems
are built from the ground up are rare and, in practice, almost always require
integration with legacy systems.

The more common SoS capability is typically an overlay on a collection
of constituent systems. For the most part, constituent systems are existing
systems that had been developed for specific users to support particular mis-
sions in certain environments. The different user communities each have
their own culture, norms, and terminology. Missions may be different across
the users of the various systems, and even if they are the same, the concepts
of operation and employment likely are not. An example is the United States
Defense Department’s Single Integrated Air Picture program.

SoR1

System
Capabilities

SoR2

SoR716PoR716

SoS
Capability

Results

SoS Capability
Development

thru
Oversight, Alignment,

& Synchronization

System-of-Systems
Capabilities

Cl
as

sic
al

 S
E

an
d

M
an

ag
em

en
t

M
an

ag
em

en
t v

ia
 M

ile
st

on
e R

ev
ie

w
s

SoRn

PoR1

PoR2

PoRn

Figure 6.2 Classical approach to developing multisystem capabilities.

Chapter six: Enterprise system of systems 169

The development of an SoS capability tends to be an ongoing effort to
build an overlaying cross-system capability involving an ensemble of indi-
vidual systems. The overlay may touch on only a fraction of each constituent
system’s capabilities, but frequently it is a critical fraction. The focus of this
overlay type of SoS development is on evolution of capability over time, with
the capability taking one of several forms: (1) enhancing the way the under-
lying, existing systems work together, (2) adding new functionality through
the incorporation of new systems or changes to existing systems, (3) pro-
viding enhancements that anticipate change in the SoS environment, or (4)
reengineering systems (and, in some cases, eliminating systems) to provide
a more efficient or effective capability.

Another distinctive attribute of these types of SoS developments is that
the SoS manager typically does not control the requirements or funding for
the individual systems. More often than not, the individual systems each
have their own acquisition and development management organizations,
structures, and funding lines. Sometimes the SoS capability development
is funded as a collection of individual system modernizations. Thus, in an
SoS environment a premium is placed on the ability to influence rather than
direct outcomes, and it also affects the way in which SoS systems engineer-
ing is conducted.

From the single-system community’s perspective, its part of the SoS capa-
bility represents additional obligations, constraints and complexities. Rarely
is participation in an SoS seen as a net gain from the viewpoint of single-
system stakeholders.

At the same time the technical complexity of SoS engineering is increas-
ing dramatically, leading to new challenges in architecture, networks, hard-
ware and software engineering, and human–system integration.

6.2.3 SoS system engineering: emerging principles

A set of principles is emerging from a United States Defense Department ini-
tiative to understand and differentiate engineering of these complex, increas-
ingly common systems of systems [2]. Some are different in degree than
engineering at the single-system level, while others are different in kind.

System engineering is performed in the context of a particular organiza-
tional structure and culture, and so the discipline has always had to be attuned
to and aligned with the realities of organizations and their cultures. But in
an SoS environment there are increased complexities in both organizational
and technical dimensions. There is an increased need to foster relationships
among the engineers and users of the systems. Additional complexity comes
from a need to achieve a technical understanding of the systems, including
their interrelationships and dependencies. Systems engineering trades at the
SoS level factor into the objectives, plans, and motivations of the individual
systems and vice versa.

170 George Rebovich, Jr.

Another emerging principle is that SoS systems engineering should focus
on areas critical to the SoS, per se, and leave as much of the rest as possible to
systems engineers of the individual systems. For example, the SoS integrated
master schedule should focus on key synchronization (or intersection) points
and dependencies among systems. Key processes and issues at the SoS level
include configuration management, risk, and data interoperability.

The technical counterpart to the principle in the preceding paragraph is that
SoS design should be based on open systems and loose couplings to the degree
possible. The goal is to impinge on the individual systems as little as possible,
thus providing them flexibility to address changing needs of the system-level
users and apply the technologies best suited to those needs. This design prin-
ciple provides benefits at the SoS level, as well, including extensibility and
flexibility. This enables the addition or deletion of systems and changes in
systems without affecting the other systems or the SoS as a whole.

Logical analysis has always been a fundamental process of system engi-
neering. Systems engineering practitioners have found that this one-time, up-
front process in a single-system setting becomes a more or less continuous
process in an SoS environment. Sources of change, both internal and exter-
nal, are more pronounced and persistent, with the result that the emphasis of
logical analysis in an SoS setting is on foreseeing that change.

Not all best practices in a single-system setting scale well to an SoS when
the number of systems involved exceeds a handful. Two examples are par-
ticipation in other system milestone reviews and one-on-one intersystem
meetings, both of which could take substantial time and resources. In these
situations, the SoS technical management approach needs to emphasize
single-system transparency across the SoS community as a way of achiev-
ing trust. One way to increase transparency is to make information that
has historically been closely held within a single system’s program office
and immediate stakeholders accessible to the SoS community, perhaps via
a shared web collaboration space. This “passive” transparency can then be
augmented by active collaboration between system stakeholders on focused
issues that make best use of human-to-human contact time.

6.2.4 SoS systems engineering: toward a new view

Discussions with United States Defense Department SoS systems engineer-
ing practitioners illuminate a view of how they perceive and do systems
engineering that is different from their single-system counterparts.

For the most part, SoS system engineers view their world and frame their
activities through seven megaprocesses which the SoS systems engineering
team creates and tailors to the SoS, largely by drawing elements from across
the 16 single-system technical and technical management processes of the
Defense Department’s Defense Acquisition Guidebook, depicted in Figure 6.3.

In essence, the 16 Defense Acquisition Guidebook processes are a “parts box”
used to build the SoS megaprocesses. Another major difference between the

Chapter six: Enterprise system of systems 171

Defense Acquisition Guidebook processes and the SoS megaprocesses is that,
while there is usually some temporal order associated with the implementation
of the former, in the latter the megaprocesses are viewed as being applied
more or less continuously throughout the SoS lifecycle.

What follows is one view of the SoS systems engineering megaprocesses
and their relationship to the Defense Acquisition Guidebook technical and tech-
nical management processes. It is intended primarily as an illustration of the
ideas presented above.

One megaprocess is translating SoS capability objectives into high-level
requirements over time. The focus is on developing a basic understanding of
the expectations of the SoS and the core technical requirements for meeting
those expectations, independent of the systems that will be constituents of
the SoS.

A second megaprocess is understanding the systems of the SoS, their rela-
tionships, and plans for known change, over time. In SoS system engineer-
ing (SE), the focus is on the systems which contribute to the SoS capabilities
and their interrelationships. This is differentiated from the single-system
engineering focus on boundaries and interfaces.

Requirements
Development

Logical
Analysis

Implementation

Validation

Verification

IntegrationDesign
Solution

Transition
Technical Processes

Technical Management Processes

Decision
Analysis

Technical
Planning

Requirements
Management

Data
Management

Configuration
Management

Risk
ManagementTechnical

Assessment
Interface

Management

Figure 6.3 Technical and technical management processes.

172 George Rebovich, Jr.

A third SoS process is developing, evolving, and maintaining a high-level
design or architecture of the SoS. This is a relatively persistent representation
of the framework overlay of the SoS on the constituent systems. It includes
concepts of operations and employment; descriptions of the systems, func-
tions, relationships, and dependencies, both internal and external; end-to-
end functionality and data flow. This process is directed toward addressing
the evolution of the SoS to meet future needs, including possible changes in
system functionality, performance, or interfaces.

A fourth megaprocess is continually monitoring proposed or potential
changes and assessing their impacts to SoS or constituent system perfor-
mance or functionality. This includes internal changes to technology or mis-
sion of the constituent systems as well as external demands on the SoS. The
ability to discern and deal with external influences, such as changes in mis-
sion, technology, unplanned use of or demand for SoS capabilities, is critical.
The focus of this process not only is on precluding or mitigating problems
for the SoS and constituent systems, but also includes identifying opportuni-
ties for enhanced functionality and performance. An output of this process
is changes to the understanding of constituent systems, their relationships,
and known plans.

A fifth process is evaluating emerging new SoS requirements and options
for dealing with them. This process involves reviewing, prioritizing, and
determining which SoS requirements to implement next. The output is a
detailed implementation for the SoS capability. This process contains a con-
figuration control board type of function.

The sixth process orchestrates upgrades to the SoS. It includes planning and
facilitating integration and developmental testing and evaluation activities.

Lastly, there is the ongoing need to assess actual performance of the SoS to
the capability objectives. This requires SoS metrics and methods for assess-
ing capability performance as differentiated from capability development.

Note the strong “continuing” aspect of these SoS processes signaled by
phrases and words like over time, evolving, monitoring, emerging, and ongoing.

Figure 6.4 notionally depicts the high-level relationship between the SoS
megaprocesses and the 16 Defense Acquisition Guidebook technical and techni-
cal management processes. In general, the technical management processes
are more heavily represented in the SoS megaprocesses, reflecting the SoS
systems engineering role of coordination and orchestration across systems,
with detailed engineering implementation taking place primarily at the sys-
tem level.

Figure 6.5 notionally depicts an SoS system engineering view of the inter-
relationships among the SoS processes. There is less structure in timing or
sequencing than would be indicated by single-system waterfall, incremental,
or iterative approaches to implementing systems engineering processes.

Chapter six: Enterprise system of systems 173

Re
fle

ct
s t

he
 fa

ct
 th

at
 te

ch
ni

ca
l p

ro
ce

ss
es

ar
e p

rim
ar

ily
 im

pl
em

en
te

d
by

 sy
st

em
s

Re
fle

ct
s t

he
 S

oS
 S

E
ro

le
 o

f t
ec

hn
ic

al
co

or
di

na
tio

n
an

d
di

re
ct

io
n

ac
ro

ss
 sy

st
em

s

A
ss

es
sin

g
Ac

tu
al

 P
er

fo
rm

an
ce

 to
Ca

pa
bi

lit
y O

bj
ec

tiv
es

O
rc

he
st

ra
tin

g
U

pg
ra

de
s t

o
So

S

Ad
dr

es
sin

g
N

ew
 R

eq
’ts

. &

Im
pl

em
en

ta
tio

n
O

pt
io

ns

M
on

ito
rin

g
an

d
A

ss
es

sin
g

Ch
an

ge
s

D
ev

el
op

in
g,

 E
vo

lv
in

g
&

 M
ai

nt
ai

ni
ng

So
S

A
rc

hi
te

ct
ur

e

U
nd

er
st

an
di

ng
 S

ys
te

m
s &

 R
el

at
io

ns
hi

ps

Tr
an

sla
tin

g
Ca

pa
bi

lit
y O

bj
ec

tiv
es

So
S

M
eg

a-
Pr

oc
es

se
s

Te
ch

ni
ca

l M
an

ag
em

en
t P

ro
ce

ss
es

D
ec

isi
on

A
na

ly
sis

Te
ch

Pl
an

ni
ng

Te
ch

A
ss

es
s

Rq
ts

M
gt

Ri
sk

M
gt

Co
nfi

g
M

gt
D

at
a

M
gt

In
te

rfa
ce

M
gt

Rq
ts

Le
ve

l
Lo

gi
ca

l
A

na
ly

sis
D

es
ig

n
So

lu
tio

n
Im

pl
e-

m
en

t
In

te
gr

at
e

Te
ch

ni
ca

l P
ro

ce
ss

es Ve
rif

y
Va

lid
at

e
Tr

an
s-

iti
on

× × × × × ×

×××

× × × ×

××××××
× × ×

× × ×

×××

× ×
× ×

×

×
×

×
× ×

×

×

× × × × × × ×

×
× ×

Fi
gu

re
 6

.4

R
el

at
io

ns
h

ip
 o

f S
oS

 s
ys

te
m

s
en

gi
ne

er
in

g
m

eg
ap

ro
ce

ss
es

 to
 D

ef
en

se
 A

cq
ui

si
ti

on
 G

ui
de

bo
ok

 p
ro

ce
ss

es
.

174 George Rebovich, Jr.

6.3 Enterprise systems engineering
Governments, large multinational organizations, and indeed all of society
are in the midst of a major transformation driven by and deriving its charac-
ter largely from advances in information technology.

The rate of technical change in information processing, storage, and com-
munications bandwidth is enormous. Expansions in other technologies (e.g.,
netted sensors) have been stimulated and shaped by these changes. The infor-
mation revolution is reducing obstacles to interactions among people, busi-
nesses, organizations, nations, and processes that were previously separated
in distance or time. Surprisingly, future events in this information-abundant
world are harder to predict and control, with the result that our world is
becoming increasing complex. Why this is so is illustrated by Figure 6.6, in
which our increasing interconnectedness (left side) makes us all coproducers
of outcomes in airline flight availability as we vie for finite resource like non-
stop connections whose accessibility and price can change with astonishing
speed, as suggested by the online flight availability screen shots on the right
side of the figure.

This new complexity is not only a consequence of the interdependencies
that arise when large numbers of systems are networked together to achieve
some collaborative advantage. When the networked systems are each indi-
vidually adapting to both technology and mission changes, then the environ-
ment for any given system or individual becomes essentially unpredictable.
The combination of large-scale interdependencies and unpredictability cre-
ates an environment that is fundamentally different from that at the system
or SoS level. As a result, systems engineering success expands to encompass

Large Role of
External Influences

Persistent
Framework Overlay
on Systems in SoS

(architecture)

Block Upgrade
Process for SoS

Typically not the
Role of the SE but

Key to SoS
Assessing

Performance
to Capability
Objectives

Developing,
Evolving and
Maintaining
SoS Design

External Influences

Monitoring
& Assessing

Changes

Orchestrating
Upgrades

to SoS
Understanding

Systems &
Relationships

Translating
Capability
Objectives

Addressing New
Requirements

& Options

Figure 6.5 Interrelationships among SoS systems engineering megaprocesses
(notional).

Chapter six: Enterprise system of systems 175

not only success of an individual system or SoS, but also the network of con-
stantly changing systems. Examples in which this new complexity is evident
include the United States Federal Aviation Administration’s National Air-
space System, the Defense Department’s Global Information Grid, the Inter-
nal Revenue Service’s Tax Systems, and the Department of Homeland
Security’s Secure Border Initiative’s SBInet.

6.3.1 Enterprise and enterprise capabilities

By “enterprise” we mean an association of interdependent organizations and
people, supported by resources, which interact with each other and their
environment to accomplish their own goals and objectives and those of the
association. Resources include manpower, intellectual property, organiza-
tional frameworks and processes, technology, funding, and the like. Inter-
actions include coordination of all types, sharing information, allocating
funding, and the like. The goals and objectives of the various organizations
and individuals in the enterprise will sometimes be in conflict.

In the business literature an enterprise frequently refers to an organiza-
tion, such as a firm or government agency; in the computer industry it refers
to any large organization that uses computers (e.g., as in Enterprise Resource
Planning systems). The definition of enterprise in this chapter is intended to
be quite broad and emphasize the interdependency of individual systems
and systems of systems, and the emergence of new behaviors that arise from
the interaction of the elements of the enterprise. The definition includes
firms, government agencies, large information-enabled organizations, and
any network of entities coming together to collectively accomplish explicit or
implicit goals. This includes the integration of previously separate units [4].
Examples of enterprises include:

Figure 6.6 Our world is becoming increasingly complex [3].

176 George Rebovich, Jr.

A chain hotel in which independent hotel properties operate as agents •	
of the hotel enterprise in providing lodging and related services while
the company provides business service infrastructure (e.g., reservation
system), branding, and the like.
A military command and control enterprise of organizations and indi-•	
viduals that develop, field, and operate command and control systems,
including the acquisition community and operational organizations*
and individuals that employ the systems.

The systems engineering literature is replete with phrases like “system
capabilities” and “SoS capabilities,” so the question arises, “what is an enter-
prise capability, and how does it differ?”

An enterprise capability involves contributions from multiple elements,
agents, or systems of the enterprise. It is generally not knowable in advance
of its appearance. Technologies and their associated standards may still be
emerging, and it may not be clear yet which will achieve market dominance.
There may be no identifiable antecedent capability embedded in the cultural
fabric of the enterprise, and thus there is a need to develop and integrate the
capability into the social, institutional, and operational concepts, systems,
and processes of the enterprise.

The personal computer emerged as a replacement for the combination of a
typewriter and a handheld calculator, both of which were firmly embedded
in our social, institutional, and operational concepts and work processes. The
personal computer is not an enterprise capability by this definition. But the
Internet is an enterprise capability. Its current form could not possibly have
been known in the 1980s. Its technology has been emerging and continues to
do so. More fundamentally, there was no identifiable antecedent capability
embedded in the cultural fabric of our society before the Internet’s emergence,
nor were there associated problems and solutions to issues like identity theft,
computer viruses, hacking, and other information security concerns.

6.3.2 Evolution of enterprise capabilities

Enterprise capabilities evolve through emergence, convergence, and efficiency
phases, as suggested by the stylized s-curve in Figure 6.7. This is similar in
its essentials to Rogers’ diffusion of innovation curve [5], which later influ-
enced Moore’s technology adoption curve [6]. Emergence is characterized by
a proliferation of potential solution approaches (technical, institutional, and
social). Many of these potential solutions will represent evolutionary dead
ends and be eliminated (convergence) through market-like forces. This is fol-
lowed by a final period (efficiency) in which the technology is integrated and

* This example is intended to include government organizations, non-profits, and com-
mercial companies.

Chapter six: Enterprise system of systems 177

operationalized to such a degree that it becomes invisible to the humans,
institutions, and social systems that use them.

Enterprise capabilities evolve through emergence, convergence, and effi-
ciency phases whether or not an enterprise (or society) has intervention
processes in place to actively manage them. Interventions, whether purpose-
ful or accidental, can alter the shape of the evolutionary curve, the speed
at which evolution progresses, and the level of evolutionary development
achieved. This is notionally depicted in Figure 6.8. For illustration purposes,
assume that curve A depicts how a capability would evolve in an enterprise
without explicit, purposeful interventions.

In curve B, enterprise engineering processes shorten the exploration phase
(perhaps by early down-selecting to a small number of acceptable enterprise-
wide standards for a particular technology). This provides the benefit of con-
verging more quickly to an efficiency phase, but at the cost of a less optimal
efficiency phase (perhaps because superior alternatives were never explored due
to the foreshortened emergence phase). Conventional examples of this type of
premature convergence include the competition between VHS and Betamax sys-
tems of video recording, and QWERTY and Dvorak keyboard arrangements.

Curve C depicts a situation in which exploration of an enterprise capabil-
ity is extended, perhaps to consider additional emerging technology alterna-
tives. This has the effect of deferring exploitation of a preferred approach
beyond either of the other two curves, but in the end it results in the most
successful efficiency phase.

Figure 6.8 is not meant to suggest that foreshortened exploration necessar-
ily leads to a less optimal efficiency phase or that extended exploration guar-
antees a more successful one. There are no hard and fast rules. Too much
exploration can leave an organization permanently disorganized so that new

• No clear single
 solution; proliferation
 of solution approaches

• Multiple, adequate solutions
 with little performance
 differentiation among them

• Small number of mature solutions;
 integrated so completely that they
 become “invisible”

En
te

rp
ris

e C
ap

ab
ili

ty
 E

vo
lu

tio
n

Time

Emergence

Convergence

Efficiency

Figure 6.7 Phases of enterprise capability evolution and their characteristics [10].

178 George Rebovich, Jr.

ideas have their underpinnings swept away in subsequent change before it is
known whether they will work. Aggressive exploitation risks losing variety
too quickly, which can happen when fast reproduction of an initial success
cuts off future exploration and possible improvement. These are not just two
ways that a good concept can go wrong. The two possibilities form a funda-
mental trade-space. Investments in options and possibilities associated with
exploration usually come at the expense of obtaining returns on what has
already been learned [8].

The critical role of enterprise engineering processes is to shape, enhance,
and accelerate the “natural” evolution of enterprise capabilities. In the emer-
gence phase, interventions should favor and stimulate variety and explora-
tion of technologies, standards, strategies, and solution approaches and their
integration and operationalization in and across enterprise organizations,
systems, and operations. In shaping convergence, the goal of interventions is
to narrow the solution approaches and start to balance exploitation of more
robust solutions with exploration of promising, emerging alternatives. In the
efficiency phase, interventions favor exploitation of that which is known to
work through proliferation of a common solution approach across the enter-
prise. This is notionally depicted in Figure 6.9.

6.3.3 Enterprise engineering

Enterprise engineering is an emerging mode of systems engineering that
is concerned with managing and shaping forces of uncertainty to achieve
results through interventions instead of controls. It is directed toward
enabling and achieving enterprise-level and cross-enterprise capability

En
te

rp
ris

e C
ap

ab
ili

ty
 E

vo
lu

tio
n

Time

Emergence

Efficiency

C: Extended exploration; longer convergence; more successful efficiency phase
B: Foreshortened exploration; quicker convergence; less optimal efficiency phase
A: Evolution without purposeful interventions (notional)

B

B

C

C

A

A

Convergence

Figure 6.8 Shaping, enhancing, and accelerating enterprise capability evolution.

Chapter six: Enterprise system of systems 179

outcomes by building effective, efficient networks of individual systems to
meet the objectives of the enterprise. Enterprise engineering manages the
inherent uncertainty and interdependence in an enterprise by coordinating,
harmonizing, and integrating the engineering efforts of organizations and
individuals through processes informed or inspired by evolution (both natu-
ral and technology) [9] and economic markets [10].

Enterprise engineering is a multidisciplinary approach that encompasses,
balances, and synthesizes technical and nontechnical (political, economic, orga-
nizational, operational, social, and cultural) aspects of an enterprise capability.

Enterprise engineering is based on the premise that an enterprise is a col-
lection of agents (individual and organizational) that want to succeed and
will adapt to do so [11]. The implication of this statement is that enterprise
engineering processes are focused on shaping the outcome space and incen-
tives within which individuals and organizations develop systems, so that
an agent innovating and operating to succeed in its local mission will—auto-
matically and at the same time—innovate and operate in the interest of the
enterprise. Enterprise engineering processes are focused more on shaping
the environment, incentives, and rules of success in which classical engi-
neering takes place.

6.3.4 Achieving outcomes through interventions

The vast majority of government agencies are hierarchical, both organiza-
tionally and culturally. Moreover, government statutes and policies for engi-
neering and acquiring systems (contract for the effort that promises to deliver

• Interventions favor & stimulate
 variety & exploration of
 technologies, standards &
 implementation strategies

• Interventions reward
 uniformity, exploitation
 of existing solutions

En
te

rp
ris

e C
ap

ab
ili

ty
 E

vo
lu

tio
n

Time

Emergence

Convergence

Efficiency

• Interventions reward &
 incentivize common solutions
 (e.g., via collaboration)

Figure 6.9 Role of purposeful interventions in shaping enterprise capability evolution.

180 George Rebovich, Jr.

a future capability within specified performance, cost, and schedule param-
eters) and the classical approaches to systems engineering have coevolved
so that there is great sympathy and harmony between them. Together, these
realities lead many to believe that government activities are necessarily top-
down, and control-oriented (decision made at the top, execution performed
at the bottom and monitored from the top) and that interventional system
engineering and management cannot be employed now but must wait for
expansive changes in government policy and statutes [12].

This chapter takes the point of view that good systems engineering and
management has always been informed by diverse disciplines, usually
intuitively and informally, and that there is ample room for expanding and
formalizing that practice and applying it to the engineering of government
enterprise capabilities. What is needed is a change of mindset that enables
engineering and acquisition practitioners to question prevailing, largely
implicit assumptions under which most organizations operate [13].

The United States Federal Reserve System provides an example of a govern-
ment agency that helps manage the enormously complex United States economy
to achieve outcomes through interventions. As measured by gross domestic
product, the United States economy is estimated at $12.4 trillion, involves nearly
10,000 publicly traded companies and millions of consumers. All of these com-
panies and consumers are operating in their own self-interests.

By law, the Federal Reserve is charged with maintaining a balance between
growth and inflation in the United States economy. Remarkably, the Federal
Reserve has basically four tools available to it to maintain this balance. It can
sell or purchase government securities, change the reserve requirements for
banks, change the discount rate at which banks borrow money from the Fed-
eral Reserve, and change the short-term Federal Reserve funds rate at which
banks borrow money from each other.

Separately and in combination, these mechanisms serve to increase or
decrease the supply of money in the economy. Great economic analysis skill
is needed in deciding how many securities to sell or buy and when, and
whether and how much to change reserve requirements, discount and Fed-
eral Reserve funds rates, and when. But, generally, the economy responds in
a way the Federal Reserve intends.

The Federal Reserve harnesses the complexity of the myriad of intercon-
nected organizations and individuals in the United States economy through
a handful of interventions to achieve its purpose. Companies and consumers
innovate to make and change decisions in response to the Federal Reserve’s
interventions in a way that serves their own interests and—at the same
time—the interests of the Federal Reserve.

Think about managing the acquisition of government enterprise capabili-
ties in a similar way. What are the big levers in government acquisition that
could shape outcome spaces and create incentives for individual programs
in which they meet their own program goals while solving the problems of
the enterprise? A definitive answer to that is not yet known, but the levers

Chapter six: Enterprise system of systems 181

likely surround managing the balance of technology exploration and exploi-
tation to focus and accelerate the evolution of enterprise capabilities through
its maturity curve (reference Figure 6.7 through 6.9).

What are the systems engineering disciplines and processes that support
decision makers to move levers in one direction or the other? System engi-
neering at the enterprise level may be the counterpart to economic analysis
at the Federal Reserve System level (technical analysis and forecasting to
support “moving the levers”). And this shapes and changes the environment
for classical systems engineering at the program level, which is about skill-
fully responding to the environment that surrounds the program (which is
analogous to company financial experts who provide technical support to
senior company management in making financial decisions in changing eco-
nomic times). An example of what an enterprise-level engineering process
might look like is presented later in this chapter.

6.3.5 A framework for evolving enterprise capabilities

Figure 6.10 shows an approach in which enterprise engineering processes
shape the evolution of enterprise capabilities through emergence, conver-
gence, and efficiency phases via evolutionary or market-like mechanisms at

ESE Processes Shape, Enhance and Accelerate
The Evolution of Enterprise Capabilities

Enterprise
Capability
Emergence
Interventions

Enterprise
Capability
Convergence
Interventions

Enterprise
Capability
Efficiency
Interventions

Cl
as

sic
al

 S
E

an
d

M
an

ag
em

en
t

vi
a

M
ile

st
on

e
Re

vi
ew

s

System
Capabilities

SoR1PoR1

SoR2PoR2

SoR716

SoRn

PoR716

PoRn

Prescriptive,
compliance-based
approach to build

system capabilities Shape & influence
approach to evolve

enterprise capabilities

Time

Emergence

En
te

rp
ris

e C
ap

ab
ili

ty
D

ev
el

op
m

en
t

Convergence

Efficiency

Figure 6.10 A framework for evolving enterprise capabilities.

182 George Rebovich, Jr.

the same time that individual system capabilities are being developed via
the classical system engineering approach of building to a plan.

The basic notion is to stimulate innovation by and interactions among
programs of record to move the enterprise toward an enterprise capability at
the same time the programs are developing their systems of record. Specific
interventions depend on the phase or state the enterprise capability is in.

This approach is similar in its essentials to the Federal Reserve intervening
in the United States economy in which the collective response of organiza-
tions and individuals operating in their own self interests to those interven-
tions serve their needs and those of the Federal Reserve at the same time.

6.3.6 Guiding and monitoring enterprise evolution

Exploration versus exploitation is an important trade between the creation
of untested solutions that may be superior to solutions which currently exist
and have so far proven best. This trade occurs across a wide range of circum-
stances in which the exploration of that which is new or emerging (variety)
comes at some expense to realizing benefits of that which is already available
(homogeneity).

It is not always the case that variety is good and homogeneity is bad,
or vice versa. More variety is indicated during the emergence phase of an
enterprise capability with a movement toward increasing homogeneity as
an enterprise capability moves through convergence and efficiency phases
of its evolution. The criteria for shaping that change will differ depending
on the phase. Table 6.1 summarizes characteristics of each phase of enter-
prise capability evolution and ideas for shaping the exploration/exploita-
tion balance.

An enterprise capability is a characteristic of the enterprise in its operation.
The implication is that enterprise performance should be strongly tied to the
behavior of operational units employing enterprise systems and capabilities
in actual operations. Measures intended to monitor the evolution of enter-
prise capabilities should focus on capturing changes in the way operational
units interact. The evolution and utilization of enterprise capabilities have
strong elements of social system structure and dynamics. The implication is
that the definition of enterprise measures should include sociologists as well
as operational and technical experts. Formal verification of the piece-parts of
an enterprise capability will still need to be done as part of system sell-offs,
but they should not be viewed as the primary indicators of an enterprise
capability. Even as simple a system as a wristwatch is primarily evaluated
holistically (e.g., does it tell time correctly?) and not as the pair-wise interac-
tions of its myriad mechanical and electrical parts. Table 6.2 suggests some
examples of measures for monitoring the evolution of military interoperabil-
ity at the enterprise level.

Chapter six: Enterprise system of systems 183

Table 6.1 Guiding Enterprise Evolution

Enterprise Capability Phase
Characteristics Examples, Rules of Thumb, and Anecdotes

Emergence
When there are no clear •	
solutions or multiple,
emerging solutions.
When extensive or long-term •	
use can be made of a solution.
When there is low risk of •	
catastrophe from exploration.

Emergence
Reward proliferation of potential •	
solutions. Example: DARPA Grand
challenge to accelerate evolution of
critical autonomous robotic vehicle
technology.
Operating systems and some •	
applications (e.g., target tracking and
identification) are among the longest
lived elements of IT.
Modular enterprise architectures that •	
provide market-like choices for different
service layers.

Convergence
When there are multiple, •	
adequate solutions with little
performance differentiation.
When maintaining multiple •	
solutions impairs enterprise
performance or cost.

Convergence
Narrow the solution space by providing •	
rewards or incentives to programs and
contractors that achieve common solutions
through collaboration.
Solutions are not prescribed from above. •	

Efficiency
When there are a small •	
number of mature solutions
that dominate the market.
When the probability of •	
technology change is low.

Efficiency
Reward exploitation of existing solutions•	
Reward use of common solutions•	
Solution is not specified from above.•	

Table 6.2 Monitoring Enterprise Evolution

Emergence Convergence Efficiency

Increase total no. of •	
interface control
documents among
programs of record.
Increased volume of •	
voice, email, chat &
instant messaging among
operational units.
Communication •	
emerging among
previously
noninteracting units.

Decrease in number •	
of interface control
documents.
Increased use of •	
common standards
among programs of
record.
Less episodic, more •	
continuous
interactions among
operational units.

Predominant use of •	
single standard
among operational
units.
Predominantly •	
continuous
interactions among
operational units.

184 George Rebovich, Jr.

6.3.7 An example enterprise level engineering process

At the system level, technical planning and assessment processes address
the scope of the technical effort required to develop a system, and measure
the progress and effectiveness of the technical requirements and the plans
to achieve them.

Given the relationship between system development and enterprise capa-
bility evolution depicted in Figure 6.10, technical planning at the enterprise
level may need to be more about capability forecasting and evolution. The
forecasting piece is about the identification of what phase a capability is in
now and where it is heading in its evolution or adoption (e.g., emergence,
convergence, or efficiency phase as depicted in Figure 6.7). The evolution
piece is about shaping the capability evolution curve (Figure 6.8) within
the government enterprise environment and moving the application and
institutionalization of the capability up the evolutionary maturity curve
(Figure 6.9). The goal should be to accelerate the natural processes of evolu-
tion with an emphasis on application to, e.g., military command and con-
trol systems. Innovation and other behavior that moves the enterprise up
the evolution curve needs to be incentivized and rewarded. Specific crite-
ria for rewards and incentives depend on the stage of capability evolution
(Table 6.1 and Figure 6.10). For example, to stimulate the emergence phase
of an enterprise capability evolution, Defense Advanced Research Projects
Agency (DARPA) Grand-Challenge-like events could proliferate a number of
technical approaches quickly.

The enterprise view of and process for capability planning should focus
on the management of the population of technology initiatives to achieve
the right exploration/exploitation balance, not on the outcomes of individ-
ual, specific initiatives. In this way, specific technologies, products, and/or
standards emerge as the program-of-record marketplace innovates ideas and
rewards winners.

Thus, the focus of capability assessment and planning at the enterprise
level is on identifying broad technology trends, shaping DoD technology
outcome spaces, and managing the interactions of enterprise participants so
that solutions emerge through market-like forces, as opposed to the current
practice of having high-level government offices identify and mandate spe-
cific products or standards as de facto winners in the marketplace of ideas.

6.3.8 Governing and measuring enterprise capabilities

Figure 6.11 depicts a framework for relating governance approach and mea-
sures of success to different situations in acquiring government capabilities.
Much of the experience in engineering and acquiring government systems
falls in the lower left-hand quadrant. Prescriptive, requirements compliance–
based approaches work well in delivering systems built on a mature and
homogeneous technology base using classical systems engineering processes.

Chapter six: Enterprise system of systems 185

But their utility in a net-centric environment is less clear. Increasingly, the net-
centric environment is characterized by threads of functionality that are put
together to serve an immediate operational need and then, just as quickly, are
reassembled in another way for another purpose. The focus of success will
shift to demonstrated value of services that enable functionality in operational
environments. Increasingly, enterprise demand for a service or offering will
become its measure of value. Government programs and the contractors that
support them will increasingly ask and answer “what is it of unique value?”
that we provide to the enterprise. Evolving enterprise capabilities is best
served by the approach in the upper right-hand quadrant. While employed
less frequently, the approaches represented by the two other quadrants have
their uses: the lower right quadrant for concept explorations like the DARPA
Autonomous Vehicle Grand Challenge and the upper left quadrant for meet-
ing immediate, critical needs like enhanced armoring of existing military
vehicles.

There have been efforts in recent years to develop government enterprise
information technology acquisition policies and processes that are less pre-
scriptive and attempt to provide more latitude for programs to collaborate
and innovate (lower right quadrant of Figure 6.11). Many understand and
appreciate the need for different governance approaches and success models
and, indeed, even start in that direction. But there are deep structural issues
in government enterprise information technology acquisitions that continue

• Most government
 acquisition &
 engineering experience

• Focus of success on
 unique value of services
 that enable operational
 functionality

• Example: DARPA
 autonomous vehicle
 grand challenge

• Example:
 Enhanced armoring
 of military vehicles

Enterprises;
evolving
technologies,
requirements &
operations

Proven systems;
requirement to
meet urgent
needs

Concept
exploration;
technology
maturity.

Systems; mature
technologies,
requirements &
operations

Prescriptive

M
ea

su
re

 o
f S

uc
ce

ss
Re

qu
ire

m
en

ts
Co

m
pl

ia
nc

e
D

em
an

d
or

 O
th

er
D

em
on

st
ra

te
d

Va
lu

e

Acquisition Governance Approach
Shape & Influence

Figure 6.11 Governing and measuring enterprise capabilities.

186 George Rebovich, Jr.

to drive policy makers, program offices, and contractors to the lower left-
hand quadrant of Figure 6.11 regardless of their specific circumstances or
intentions. The prevailing business models used in government programs
(contract for the promise of a future capability) encourages programs and
contractors to ask for more detailed guidance (to minimize cost, schedule,
and requirements risk of the contract) and discourages them from creating
high-demand services or offering because of the risk of driving the program
out of its predefined requirements and expectations.

6.3.9 The enterprise market: changing the risk balance
with service-oriented architectures

The advantages normally cited for a service-oriented architecture* approach
to networked information technology systems are reduced complexity and
cost of integration, enhanced reusability, better identification and manage-
ment of dependencies among systems, and industry compatibility at the
service level. Potentially more significant is the prospect that a service-
oriented architecture can move government acquisition away from paying
for effort to make good on a promise (the contract) toward a market-like
economy in which contractors develop product or service offerings that
compete for market share. This has enormous implications for shifting the
balance of risk in government enterprise acquisition from being essentially
wholly owned by the government to being shared between the govern-
ment, as consumer, and contractors as producers of services that are com-
peting for market share [14].

What follows is a simple example to illustrate the point. Consider a gov-
ernment community consisting of producers of a unique type of data (e.g.,
sensor data) and consumers who use the data to accomplish activities ranging
from broad situation awareness, precise and immediate location finding, and
detailed historical analysis. Taking a service-oriented architecture approach
to developing enterprise capabilities for the production and consumption of
this sensor data suggests separating data, exploitation tools, and visualiza-
tion tools in a relatively machine-independent way. Consider all potential
government producers and users of the sensor information as the market
for data services, exploitation tools, and visualization tools. Commonality
for data flow and storage is critical across the entire market. The need for
exploitation tools is driven by specific mission and activities, so its market is
characterized by some common tools and some specialized ones. The mar-
ket for visualization tools is probably many common and a few specialized
ones. So, the one community behaves as three different markets: one for data,

* A service is a functional capability that is made available to consumers via an
exposed network access point. From a consumer’s point of view, services are black
boxes on the network in that their internal implementation is hidden from the
consumer.

Chapter six: Enterprise system of systems 187

another for exploitation tools, and a third for visualization tools. This sug-
gests a stakeholder community of practice which governs the three levels of
the service-oriented architecture differently: a prescriptive, top-down gov-
ernance approach for data, and a shaping/influencing governance approach
for tools to encourage and enable contractors to innovate and differentiate
their products and services and be rewarded with a larger market share.

6.4 Summary and conclusions
This chapter has defined three modes of systems engineering, discussed the
challenge space each addresses, described how they differ from and comple-
ment each other, and suggested what their interrelationships should be in
solving engineering problems of the future.

Classical systems engineering is a sequential, iterative development pro-
cess used to produce systems and subsystems, many of which are of unprec-
edented technical complication and sophistication. An implicit assumption
of classical systems engineering is that all relevant factors are largely under
the control of or can be well understood and accounted for by the engineer-
ing organization, the system engineer, or the program manager and this is
normally reflected in the classical systems engineering mindset, culture,
processes, and measures of success.

The classical approach to developing multisystem capabilities is through
an executive oversight agency that aligns and synchronizes the development
of individual systems to develop a capability that is greater than the sum of
the individual systems. This approach works for SoSs that are comprised of
individual systems that are being developed together as a persistent, coher-
ent, unified whole, particularly when the identity and reason for being of the
individual elements of these SoSs are primarily tied to the overarching mis-
sion of the SoS, the operational and technical requirements are relatively well
known, the implementation technologies are mature, and there is a single
program executive with comprehensive management and funding authority
over the included systems. The classical approach to SoS development or mod-
ernization works for this category of SoS because it satisfies all the essential
conditions and attributes of engineering at the system level, only it is larger.
The community culture, organizational norms, rules of success, engineering
and business processes, and best practices in this category of SoS either are
essentially the same as at the system level or they scale appropriately.

More recently SoS development has focused on engineering of capabili-
ties across multiple existing systems. The most common SoS capability is
typically an overlay on a collection of constituent systems with the develop-
ment of the SoS capability being an ongoing effort involving an ensemble of
individual systems. A distinctive attribute of these SoS developments is that
the SoS manager typically does not control the requirements or funding for
the individual systems. At the same time, the technical complexity of SoS
engineering is increasing dramatically, leading to new challenges in archi-

188 George Rebovich, Jr.

tecture, networks, hardware and software engineering, and human–system
integration. In these SoS environments, the SoS system engineers view their
world and frame their activities through seven megaprocesses by drawing
elements from across the 16 single-system technical and technical manage-
ment processes of the Defense Department’s Defense Acquisition Guidebook.
The Defense Acquisition Guidebook processes are a parts box used to build the
SoS megaprocesses. The executions of these processes are more or less con-
temporaneous, as differentiated from the serial or iterative progression of
engineering processes in a single-system context.

An enterprise capability involves contributions from multiple elements,
agents, or systems of the enterprise. It is generally not knowable in advance
of its appearance. Technologies and their associated standards may still be
emerging, and it may not be clear yet which will achieve market dominance.
There may be no identifiable antecedent capability embedded in the cultural
fabric of the enterprise, and thus there is a need to develop and integrate the
capability into the social, institutional, and operational concepts, systems,
and processes of the enterprise. Enterprise engineering is an emerging mode
of systems engineering that manages and shapes forces of uncertainty to
achieve enterprise capabilities through interventions instead of controls. It
is directed toward enabling and achieving enterprise-level and cross-enter-
prise capability outcomes by building effective, efficient networks of indi-
vidual systems to meet the objectives of the enterprise.

Enterprise engineering manages the inherent uncertainty and interde-
pendence in an enterprise by coordinating, harmonizing, and integrating
the engineering efforts of organizations and individuals through processes
informed or inspired by evolution and economic markets. Enterprise engi-
neering processes shape the evolution of enterprise capabilities through
emergence, convergence, and efficiency phases via evolutionary or market-
like mechanisms at the same time that individual system capabilities are
being developed via the classical system engineering approach of building
to a plan. Enterprise engineering stimulates interactions among programs of
record to innovate the enterprise toward an enterprise capability at the same
time the programs are developing their systems of record.

An enterprise capability is a characteristic of the enterprise in its opera-
tion. The implication is that enterprise performance will become increas-
ingly tied to the behavior of operational units employing enterprise systems
and capabilities in actual operations. Measures intended to monitor the evo-
lution of enterprise capabilities will focus on capturing changes in the way
operational units interact. The focus of success in an enterprise environment
will be on demonstrated value of services that enable functionality in opera-
tional environments. Increasingly, enterprise demand for a service or offer-
ing will become its measure of value. Service-oriented architectures have the
potential for shifting government acquisition away from paying for effort to
make good on a contract toward a market-like economy in which contractors
develop product or service offerings that compete for market share. This has

Chapter six: Enterprise system of systems 189

implications for shifting the balance of risk in government enterprise acqui-
sition from being owned by the government to being shared between the
government, as consumer, and contractors as producers of services that are
competing for market share.

References
 1. INCOSE. 2004. Systems Engineering Handbook. INCOSE-TP-2003-016-02, ver-

sion 2a. INCOSE, June 2004.
 2. Baldwin, K. 2007. Systems of systems: challenges for systems engineering.

INCOSE SoS SE Panel, 28 June 2007.
 3. Rebovich, G., Jr. 2006. Systems thinking for the enterprise: new and emerging per-

spectives. Proceedings of 2006 IEEE International Conference on Systems of Systems.
 4. MITRE. 2007. Evolving Systems Engineering at MITRE. The MITRE Corpora-

tion, Bedford, MA.
 5. Rogers, E. M. 2003. Diffusion of Innovation, 5th Edition. Free Press, New York.
 6. Moore, G. A. 2002. Crossing the Chasm. Harper Collins, New York.
 7. Rebovich, G., Jr. 2006. Systems thinking for the enterprise: a thought piece.

International Conference on Complex Systems, Boston, MA, June 2006. MP
06B0025. The MITRE Corporation, Bedford, MA.

 8. Rebovich, G., Jr. 2005. Enterprise Systems Engineering Theory and Practice, vol. 2.
Systems Thinking for the Enterprise: New and Emerging Perspectives. MP05B043,
vol. 2. The MITRE Corporation, Bedford, MA.

 9. Axelrod, R. and M. D. Cohen, 2000. Harnessing Complexity: Organizational Impli-
cations of a Scientific Frontier. Basic Books, New York.

 10. Schelling, T. C. 1978. Micromotives and Macrobehavior. W. W. Norton, New York.
 11. Allison, G. and P. Zelikow. 1999. Essence of Decision: Explaining the Cuban Missile

Crisis, 2nd Edition, Addison-Wesley, Reading, MA.
 12. Rebovich, G., Jr. 2007. Engineering the enterprise, Proceedings of the 2007 1st

Annual IEEE Systems Conference, April 2007.
 13. Kemeny, J., M. Goodman, and R. Karash. 1994. The Acme story. In The Fifth

Discipline Fieldbook, eds. P. M. Senge et. al. Currency Doubleday, New York.
 14. Flyvbjerg, B. et al. 2003. Megaprojects and Risk: An Anatomy of Ambition. Cam-

bridge University Press, Cambridge.

191

chapter seven

Definition, classification,
and methodological issues
of system of systems
Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

Contents

7.1 Introduction.. 191
7.2 System of systems definition and characteristics 192

7.2.1 Evolutionary behavior .. 193
7.2.2 Self-organization ... 194
7.2.3 Heterogeneity ... 194
7.2.4 Emergent behavior .. 194
7.2.5 Network .. 195

7.3 A production system as a system of systems .. 196
7.3.1 Definition of production system ... 196
7.3.2 Assessment of SoS characteristics in production systems 197

7.3.2.1 Evolutionary behavior ... 197
7.3.2.2 Self-organization .. 197
7.3.2.3 Heterogeneity ... 198
7.3.2.4 Emergent behavior ... 198
7.3.2.5 Network ... 198

7.4 Classification of system-of-systems types ... 199
7.5 System-of-systems dynamics and methodology200

7.5.1 Purpose of design methodology ...200
7.5.2 Methodology dynamics .. 201

7.6 Conclusion .. 204
References .. 205

7.1 Introduction
In this chapter a generic definition of the term system of systems (SoS) is
established. This definition is based both on common definitions of SoS and

192 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

on the characteristics that systems that are usually labeled SoS exhibit. Due
to the inclusive nature of this generic definition, a wide range of sociotech-
nical systems of very different size and complexity are included in the con-
cept of SoS. In an attempt to delimit the concept, a classification is suggested
based on the redundancy of higher-level subsystems. Most systems that tra-
ditionally are considered SoS are labeled SoS type I (e.g., International Space
Station, an integrated defense system, national power supply networks,
transportation systems, larger infrastructure constructions), and systems
with nonredundant subsystems are simply labeled SoS type II, in this chap-
ter exemplified by a production system. The purpose of this classification is
partly to advance knowledge of both SoS characteristics and how to address
them, and partly to improve transferring of this knowledge from the area of
traditional SoS to other areas where SoS characteristics are present.

Many of the systems that can be classified as SoS type II have traditionally
been considered technical systems. Increased demands on these systems have
forced requirements to interlink the adhering societal system, with a result-
ing increase in size and complexity, which has introduced SoS characteris-
tics into these former technical systems. New methodologies to address SoS
characteristics have, however, not been developed; instead traditional meth-
ods are still used in design and development. An introductory discussion on
methodological issues in SoS is therefore also presented in this chapter.

7.2 System of systems definition and characteristics
The area of SoS is a fairly new research discipline without a fully established
taxonomy. Several terms are used as near synonyms with slightly different
definitions (e.g., complex system, engineering system, sociotechnical system,
and enterprise system). In addition, SoS terms are commonly only vaguely
defined. For the purpose of this chapter, both differences and similarities
between these different kinds of systems are disregarded, and SoS is used
as a generic term for large and complex sociotechnical system. This simplistic
definition of SoS proves complicated when decomposed; i.e., while sociotech-
nical is fairly unambiguous, neither large nor complex are easily measured.
However, its inclusive nature is useful when discussing systems that exhibit
similar characteristics as SoS.

To reach an agreement of what is to be studied within the area of SoS,
instantiations of large and complex sociotechnical systems have been evalu-
ated to determine if they are large and complex enough, and if they demon-
strate enough societal and technical complexity. Magee and de Weck present
an extensive list of a vast range of large systems, which are classified accord-
ing to societal complexity, technical complexity, and if they are natural or
engineered systems [1]. From an agreed upon set of SoS instantiations, com-
mon properties, characteristics, and features have then been extracted and
included as cornerstones of SoS definitions. All these generic properties of

Chapter seven: Definition, classification, and methodological issues 193

SoS are not necessarily present in all SoS, but all SoS should exhibit most of
these properties [2].

The generic properties are naturally dependant on the set of SoS studied,
and given the vast number of different SoS instantiations, every researcher
will naturally find properties that are similar to those found by others, but
not the same. Nevertheless, the following characteristics are in one or another
form commonly found in most of the literature on SoS and complex system
characteristics: evolutionary behavior, self-organization, heterogeneity, emergent
behavior, and that SoS are small-world and scale-free networks (cf. [3,4]). Fig-
ure 7.1 illustrates these characteristics and how they are related to SoS and to
other system properties.

7.2.1 Evolutionary behavior

Evolution is in this context seen as a “trial-and-error process of variation and
natural selection of systems” [5]. Similar to Darwinian natural selection, the
selection here is not guided by a goal of specific intent; rather, the selection
is automatic and a result of the internal or external environment. Conse-
quently, the life cycle of a non-SoS engineering system is not evolutionary;
partly because it is regularly encapsulated within the stages Design–Real-
ization–Operation–Recycling, and partly because the decisions are made by
a project manager or stakeholders. In an SoS, its subsystems follow the life

System

SoSNon-SoS

is_a is_a

Complex
Property

Exhibit_no_
or_few

Evolutionary Behavior

Self-Organization

Heterogeneity

Emergent Behavior

Small-World and
Scale Free Networks

Clear
Purpose

Exhibits

Links

has

Nodes

has

Connected_with

has_clear_
boundary_

is_a

Naturalcan_be

Engineeredcan_be

Exhibit_most

Figure 7.1 Concept model of SoS (adapted from Bjelkemyr, M., D. Semere, and B.
Lindberg. 2007. Proceedings of 1st Annual IEEE Systems Conference, Honolulu, HI).

194 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

cycle above, but the SoS itself is continuously and iteratively going through
all stages at the same time. In addition, there are no top-level decision mak-
ers that control the decisions in an SoS. During evolution of an SoS, unlike
Darwinian evolution, “a [system] configuration can be selected or eliminated
independently of the presence of other configurations” as long as the con-
figurations are not subsequent system states [5].

7.2.2 Self-organization

Self-organization is similar to evolution, but where evolution takes place
primarily in a system’s interface to its environment, self-organization is an
internal system process that is not “being controlled by the environment
or an encompassing or otherwise external system” [6]. For SoS, self-orga-
nization is primarily decomposed into operational and managerial inde-
pendence. Operational independence signifies that subsystems of an SoS
are independent and useful in their own right. Managerial independence
signifies that a system both is able to operate independently and actually is
operating independently.

7.2.3 Heterogeneity

Complex sociotechnical systems consist of a multitude of dissimilar or diverse
subsystems, structures, and agents. This heterogeneity is a strong driver of
system complexity; i.e., a system with heterogeneous subsystems is naturally
more complex than if the subsystems were homogeneous. A system is often
heterogeneous on multiple layers simultaneously (e.g., size, architecture, life
cycle, scientific area, and elementary dynamics). This increases the difficulty
of modeling an SoS, and requires people from different knowledge and sci-
ence domains to work side by side. As a result, new demands for commu-
nication and information handling are required (i.e., rules for interactions
between the interfaces of all nodes in a system).

7.2.4 Emergent behavior

Emergence is the added behaviors that arise due to the interactions between
its subsystems and parts, and which cannot be directly attributed to any indi-
vidual subsystem or part. There are two kinds of emergence: weak emergence,
which can be predicted by experience or extensive modeling and simulation;
and strong emergence, in which high-level behaviors are autonomous from
the systems and elements on lower levels (e.g., the autonomous relationship
between neurological processes and human cognition) [7]. These two kinds
are often intertwined, which creates confusion, especially regarding how
emergence can be dealt with [8]. Reducing weak emergence is a substantial
part of engineering work, and the engineer must always prioritize between
knowledge of system behavior on one hand, and time and resources on the

Chapter seven: Definition, classification, and methodological issues 195

other. Strong emergence, on the contrary, is not addressed in traditional
design methods.

7.2.5 Network

A network is usually represented by a graph with a set of nodes that are con-
nected by a set of edges. Both the nodes and edges can be of one or many
kinds, and the connecting edges can be either directional or nondirectional
(c.f. heterogeneity). A sociotechnical system is naturally a combination of multi-
ple kinds of kinds of nodes and edges, and the connections include both non-
directional and directional lines. Depending on the topology of the nodes and
edges in a network, different kinds of network properties emerge. These prop-
erties are completely independent of what the nodes and edges represent.

For SoS, two of the more interesting network properties are small-world
networks and scale-free networks, both being common in a diverse set of social,
information, technical, and biological networks [9].

In a small-world network most nodes are not directly connected to each
other, but most nodes can be reached from every other in a small number
of steps. This results in a dynamic system with small-world coupling that
displays “enhanced signal-propagation speed, computational power, and
synchronizability” [10]. In a scale-free network the number of edges of all
nodes in the network follows a power-law distribution (i.e., while most nodes
have few edges, some nodes are highly connected and function as hubs in
the network). A consequence is that scale-free networks are fault tolerant to
random failure, but at the same time they are vulnerable to a focused attack
on the hubs.

Both small-world and scale-free networks are the result of three statisti-
cal network characteristics that are derived using graph theory: average path
length, clustering coefficient, and degree distribution. Average path length is defined
as the average least number of steps between any two nodes in a network,
and it is a measure of the efficiency of a network. With a shorter average path
length, fewer steps are on average required to distribute information or mass
inside the network. The clustering coefficient is defined as the probability that
two nodes, which both are connected to a third node, also are connected to
each other. Consequently, the clustering coefficient is a measure of the net-
work’s potential modularity [11]. The third characteristic, degree distribution,
is the distribution of the number of edges for all the nodes in a network.

To determine if a network is a small-world, its statistical characteristics
are related to those of a random network. Two criteria should be fulfilled:
the network’s average path length should be similar to that of a random net-
work, and the network’s clustering coefficient should be greater than that of
a random network.

To be considered as a scale-free network, the degree distribution should
follow a power law distribution (i.e., while a small number of nodes are
highly connected hubs, most nodes are considerably less connected).

196 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

7.3 A production system as a system of systems
In order to evaluate if a system is to be considered an SoS, a clear definition of
the properties and boundaries of the former must be established. In the case
of production it is especially important, since production and manufacturing
are commonly used to describe both strictly technical systems and extended
enterprises. After defining production system, each SoS characteristic is
addressed from a production system point of view.

7.3.1 Definition of production system

The terms production and manufacturing are commonly used as synonyms for
the “processes that transform resources into useful goods and services” [12].
In more specific circumstances, one of the terms is usually reserved for “the
pure act or process of actually physically making a product from its material
constituents,” and the other for “all functions and activities directly contrib-
uting to the making of goods” [13]. Unfortunately, different countries and
organizations have not been able to agree upon which term to use for which
definition; consequently both terms can be found for both definitions.

On one hand, the International Academy of Production Engineering (CIRP)
uses the term production as a subset of manufacturing, although acknowledging
that manufacturing system is commonly used as a subset of a production system
[13]. On the other, a production system is in Encyclopedia Britannica defined as
“any of the methods used in industry to create goods and services from vari-
ous resources” [12]. Moreover, many acronyms and buzz words commonly
use manufacturing as a subset of production, e.g., Toyota Production system
(TPS), Flexible Manufacturing System (FMS), Mass Production.

The etymology of production and manufacturing is more in line with the
latter taxonomical alignment. The Latin roots of produce can be traced to pro-
ducere, meaning “to bring forward,” and manufacture to manu factus, literally
meaning “made by hand” [14]. For the purpose of this chapter, the definition
of interest is the more inclusive one, which generally includes or affects most
processes within a manufacturing company or network involved in trans-
forming resources into useful goods and services. The term used for this
definition will be production.

The transformed resources in a production system include labor, capi-
tal (including machines and materials, etc.), and space; these resources are
also labeled “men, machines, methods, materials, and money” [12]. Conse-
quently, design of a production system includes design of “men, machines,
methods, materials, and money.” The methods used for production system
design should consequently address design of these resources.

Even though the term production system has been defined above, its range
is too inclusive for the purpose of this chapter. Therefore, a smaller set of
production systems must be extracted to enable a comparison with SoS.
Given the purpose, larger and more complex production systems are used as

Chapter seven: Definition, classification, and methodological issues 197

instantiations of the concept production system, in particular vehicle produc-
ers (e.g., Scania, Volvo Cars, Saab).

7.3.2 Assessment of SoS characteristics in production systems

For a production system to be considered an SoS, the production system
should exhibit most of the SoS properties. To determine this, each SoS prop-
erty has through literary reviews and case studies been evaluated from a
production system point of view.

7.3.2.1 Evolutionary behavior
Evolution of a system is closely related to the life-cycle stages of that system,
and if the system’s life cycle is continuous or not. While continuous systems
are required to evolve to answer to changes in their environment, noncon-
tinuous systems are designed to function within a predetermined environ-
ment and therefore seldom possess the capability to evolve.

A manufacturing system is usually designed to fulfill a number of pre-
set requirements and constraints concerning, for example, product geom-
etry, volume, variability, capacity, capability, economy, space, and time. The
requirements restrict the design space to include all physically possible solu-
tions, and the constraints further delimit that space to, for that situation,
feasible design solutions. While the requirements rarely disqualify design
solutions enabling evolvability, it is seldom economically realistic to design
for a changing environment beyond what the requirements necessitate.

From an evolvability perspective, the design of a production system is
similar to the design of a manufacturing system, with the exception that
changes to the system’s environment are not as easily controlled and there-
fore more unpredictable. Also, a production system has to a greater extent a
continuous life cycle with iterative and parallel life-cycle stages. As a result, a
production system must possess the ability to evolve in line with its environ-
ment to remain competitive.

The evolution of a production system is a “trial-and-error process of varia-
tion and natural selection of systems” [5], and the selection is automatic and
a result of the internal or external environment. In addition, during evolu-
tion of a production system, different configurations can be selected or elimi-
nated independently of other system configurations (e.g., outsourcing and
changes to the system strategy).

7.3.2.2 Self-organization
While evolution deals with the interaction between a system and its envi-
ronment, self-organization is an internal system process that is not “being
controlled by the environment or an encompassing or otherwise external
system” [6]. For both SoS and production systems, this property is commonly
decomposed into operational independence and managerial independence.

198 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

Operational independence in a production system means that its sub-
systems (e.g., manufacturing system, suppliers, product developers) are
independent and individually functional. Existence of this property can be
demonstrated by answering if subsystems could easily be outsourced or not,
i.e., if the subsystem architecture is modular or highly intertwined. For larger
production systems, most first-tier subsystems are more or less modular and
could be outsourced.

Managerial independence in a production system signifies that its modu-
lar subsystems are managed as individual entities that are not controlled
from the top system level; i.e., production, production development, product
development, et cetera are run as separate companies. This property is heav-
ily dependent on company culture; however, top-controlled management
becomes impractical with increased subsystem size and complexity.

7.3.2.3 Heterogeneity
A production system is made up by a wide variety of “men, machines, meth-
ods, materials, and money” [12] (e.g., managers, operators, process plan-
ners, Ph.D.s, master students, high school graduates, manufacturing system,
products, computer hardware, transport system, building, process planning
tools, product design tools, DFX, production control systems, raw materials,
sub assemblies, salaries, product cost). These resources are simultaneously
heterogeneous on multiple scales, such as size, architecture, life cycle, scien-
tific area, and elementary dynamics. People with conflicting agendas from
different science and knowledge domains are required to work side by side
to enable efficient communication and collaboration.

7.3.2.4 Emergent behavior
When determining if a production system exhibits emergent behavior, it is
imperative to define which kind of emergence. All but the simplest techni-
cal systems exhibit weak emergence, which can be predicted by experience or
extensive modeling and simulation. So the interesting question is if a pro-
duction system displays strong emergence, where high-level behaviors are
autonomous from lower level systems and elements.

7.3.2.5 Network
Both small-world networks and scale-free networks have been identified
in engineering problem-solving networks, e.g., development networks for
vehicles, operating software, pharmaceutical facility, and a hospital facility
[11]. These types of engineering problems are similar to production system
design, both in size and complexity, which indicates that production system
development networks are also scale-free and small-world networks.

Chapter seven: Definition, classification, and methodological issues 199

7.4 Classification of system-of-systems types
As illustrated in the former sections, the inclusive nature of the area of SoS
enables inclusion of a wide range of sociotechnical systems of very differ-
ent size and complexity. In an attempt to both focus the research area of
SoS and enable knowledge transferring to areas working with systems that
exhibit only some of the SoS characteristics, a classification is suggested. This
classification is based on neither the high-level definition nor the appended
characteristics; instead, it is indirectly based on the effects of system failure
and the tolerance for failure from the society. For systems that are commonly
defined as SoS, failure is extremely expensive and often result in loss of key
societal functions or fatalities [16]. Failure of other sociotechnical systems,
e.g., production system, rarely results in any direct societal consequences.
Nevertheless, for the company, workers, customers, and other stakeholders,
the economical effects are often quite severe.

Based on the required fail-safety of a system, traditional SoS are often
designed with multiple redundant high-level subsystems; i.e., a functional
requirement is satisfied by multiple design parameters. This means that,
if one subsystem fails, other subsystems will provide the functions neces-
sary for the SoS to fulfill its purpose to a satisfactory degree. These multiple
design solutions greatly increase the complexity of the system, both by the
added complexity of each redundant subsystem and by the required coordi-
nation of all subsystems. Common examples of redundant SoS subsystems
are the branches in an integrated defense system, i.e., Army, Navy, and Air
Force. In an event where one of them is unable to complete its task, the oth-
ers could reconfigure and be able to perform the main system function, even
though the three are not performing exactly the same task.

For sociotechnical systems that are not required by the society to be fail-
safe, redundancy is a question of cost of failure versus cost of safety mea-
sures. This becomes especially apparent for industries that compete with
cost; customer must in that case be willing to pay for the additional safety.
For production systems, most failures are short term and can be managed by
stock or overcapacity. Yet, most production systems lack the capacity to meet
long-term failure, e.g., extensive fire in a production facility.

To differentiate between these two kinds of sociotechnical system, a clas-
sification into SoS type I and SoS type II is suggested. Both type I and II are
large and complex sociotechnical systems, and both types exhibit at least
a majority of the presented SoS properties. The differentiating property
is instead proposed to be redundancy of high-level subsystems. Type I sys-
tems have multiple subsystems delivering the same or similar functionality.
Type II systems do not have redundant subsystems.

200 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

7.5 System-of-systems dynamics and methodology
The previous sections in this chapter have dealt with definitions, properties,
and classification of SoS. In this chapter, the focus is shifted to how an SoS
is developed, in particular methodology for system design. Methodology is
here used as a set the methods and rules employed within a discipline, not
the study of methods.

7.5.1 Purpose of design methodology

The reason for utilizing design methodologies is based on the human inabil-
ity to conceptualize, relate, and remember vast amounts of information [16].
Without the support of a design methodology, this human inability will result
in emergent system behavior caused by system features that were outside of
the scope of the designers’ ability. To come to terms with this, developers are
required to use methods and tools to aid the design process.

Methods for system design can be divided into three categories: strategies,
procedures, and techniques. While some methods strictly belong to one cat-
egory, others are combinations of methods from one or many categories. The
focus in this chapter is on holistic methods that aim to address all needs dur-
ing the design phase. These holistic methods are often based on the whole
design process, with amended techniques, strategies, and procedures; e.g.,
systems engineering, KTH-IPM [17] Design for Six Sigma [18], ModArt [19],
Manufacturing System Design Framework Manual–MIT [20]. These methods
try to aid the designer through the greater part of the system design phase
and interrelate other common support systems wherever necessary.

Even though the need for tools and methods during system design is col-
lectively acknowledged, many of the developed methods have shown to be
one-dimensional, cumbersome, and restricting creativity [21]. Therefore, to
enable widespread use these negative aspects must somehow be overcome,
and system designers must feel that the return of using a system design
method is greater than the required additional work.

The aforementioned holistic system design methods all address traditional
systems engineering issues in a traditional manner, i.e., the design process
resembles how design is executed without the aid of methods. This approach
makes the transformation from an experience-based design process to a
methodology-based work process rather seamless, even though more expe-
rienced personnel might find some process steps superfluous or too simplis-
tic. A downside of keeping a traditional design process is that specific SoS
properties are very difficult or even impossible to address without altering
the structure of the design process. This added complexity naturally poses a
problem for both developers and users of system design methodology. The
result is often that holistic methods for system design are kept sequential
and hierarchical to meet requirements on user-friendliness.

Chapter seven: Definition, classification, and methodological issues 201

7.5.2 Methodology dynamics

A system’s characteristics, architecture, and dynamics are examples of criti-
cal aspects that the selected set of development methods should be able to
capture and preferably relate to each other. Traditional engineering method-
ologies are commonly centrally organized and, as a result, are not able to ade-
quately answer to all requirements of network type systems. Instead, these
systems require decentralization in which the utilities of the design objective
are defined and where the corresponding decisions are made in a distributed
manner, i.e., a local and objective definition and decision making.

This can be further elaborated by comparing the dynamics and prop-
erties of non-SoS and SoS and analyzing them with respect to centralized
and decentralized methodologies. Both the SoS definition and the amended
properties provide insight into the difference between developing an SoS
(type I) and a non-SoS. In Table 7.1, the properties are considered from an
engineering point-of-view, i.e., how the presence or absence of a specific SoS
property affects the actual engineering work.

In Table 7.1 the differences between engineering of an SoS and a non-SoS
are illustrated. For SoS type II, the engineering reality is somewhere in-
between, and its characteristics, architecture, and dynamics are consequently
also in-between. As a result, an SoS type II can in most cases be developed
using traditional systems engineering methodology; however, traditional
methodological approaches neglect or are unable to fully capture the sources
of the SoS properties in a distributed network because they themselves are

Table 7.1 Comparison of Engineering of Non-SoS and SoS

Engineering of Non-SoS Engineering of SoS (Type I)

Non-SoS are reproducible. No two SoS are alike.
Non-SoS are realized to meet
preconceived specifications.

SoS continually evolve to increase their
own complexity.

Non-SoS have well-defined boundaries. SoS have ambiguous boundaries.
Unwanted possibilities are removed
during the realization of non-SoS.

New possibilities are constantly
assessed for utility and feasibility in the
evolution of SoS.

External agents integrate non-SoS. SoS are self-integrating and
reintegrating.

Development always ends for each
instance of non-SoS realization.

SoS development never ends; SoS
evolve.

Non-SoS development ends when
unwanted possibilities and internal
friction are removed.

SoS depend on both internal
cooperation and internal competition
to stimulate their evolution.

Source: Adapted from Norman, D. O. and M. L. Kuras. 2004. Engineering Complex Systems,
MITRE Technical Paper, http://www.mitre.org.

202 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

not distributed networks. These properties will nevertheless affect the vari-
ability, and possibly result in a less robust and optimal system.

To a certain degree, methodologies inherently imply the tools and meth-
ods for analysis, decision making, and information system applicable to a
particular development process. Consequently the methods and tools appli-
cable to centralized systems may not be satisfactory for an SoS system. Cen-
tralized decision making has to be replaced by negotiation-based decision
making, one design objective utility has to be replaced by multiple objec-
tive utilities, emanated from the interest of multiple individual nodes, thus
allowing for simultaneous comparison at both a system and local level. For
this to be achieved, methods and tools in decentralized methodologies must
be simpler, and perhaps combined with simple rules to guide decisions. Nev-
ertheless, there is a new dimension of coordination that may render decen-
tralized methodologies more complex.

From a system development perspective, the difference in life cycles
between an SoS and a non-SoS are critical. Most type I SoS and some type II
SoS are developed in a continuous process, unlike the discrete development
stage that is common in traditional systems engineering. In a traditional sys-
tem life cycle, i.e., development, realization, operation, and disposal, each
stage is executed separately from the others. For most SoS, all stages are
executed concurrently and continuously, which increases the demands for
intersystem collaboration.

In addition, subsystems of an SoS are self-organizing nodes in a network.
Unlike non-SoS, where subsystems are monitored and managed top-down,
the subsystems in an SoS are selfish and put their own interest at first. These
system nodes try to maximize their own utility under the influences of and
in competition with the other nodes. Self-organizing systems act very simi-
lar to humans in a society; much like a society, the longevity of an SoS is
based on collaboration, and most subsystems are focused on long-term suc-
cess. Methods used for SoS must therefore be able to manage negotiation and
collaboration between nodes.

To illustrate the deficiencies of traditional methods and processes, devel-
opment of SoS is below paralleled with high-level production engineering
development processes.

Traditionally, the product development process was finalized prior to
the start of the production development. This results in a lengthy time to
market, especially when the production system is not able to produce the
designed product. These two development stages are therefore currently
often executed in parallel, so-called concurrent engineering. In the develop-
ment of complex products and production systems, concurrent engineering
methodology has been claimed not only to reduce time to market for prod-
ucts, but also to increase efficiency in the management of non-SoS complex
systems. The network model of a concurrent engineering process can be
thought of as a bidirectional link between the product development system
and the production development system (see Figure 7.2(a)). Furthermore, the

Chapter seven: Definition, classification, and methodological issues 203

development process for both the product and production can in their own
right be considered as densely populated networks. Therefore, the above
network can be seen as a bidirectional interaction of two networks (see
Figure 7.2(b)).

Product and production are not the only two nodes involved in develop-
ment; a large amount of activities are related to interactions among all stake-
holders (designers, suppliers, consultants, customers, etc.). These systems
must collaborate in a decentralized fashion throughout the system’s life cycle
to answer to the system’s evolving requirements, especially during system
development stages (see Figure 7.3). A concurrent design methodology must
consequently be able to capture all involved networks, something which
cannot be achieved in traditional concurrent engineering. More importantly

Product
Development

Network

Production
System

Development
Network

Product
Development

Production
System

Development

(a) (b)

Figure 7.2 Methodological illustration of (a) concurrent engineering and (b) con-
current engineering between two development networks (adapted from Bjelkemyr,
M., D. Semere, and B. Lindberg. 2007. Proceedings of 1st Annual IEEE Systems Con-
ference, Honolulu, HI).

Alfa

Sigma

Delt
a

Epsilon

Zeta

Figure 7.3 Methodological illustration of system development in a distributed net-
work of network (adapted from Bjelkemyr, M., D. Semere, and B. Lindberg. 2007.
Proceedings of 1st Annual IEEE Systems Conference, Honolulu, HI).

204 Marcus Bjelkemyr, Daniel T. Semere, and Bengt Lindberg

though, a concurrent methodology is still mainly sequential, which does not
work when the system life cycle itself is iteratively evolving.

Current digital and web-based platforms and tools have transformed the
interactions between all subsystems. The most obvious change is from a
largely heuristic and experience-based process, to a standardized technol-
ogy-centered process that does not only rely on individuals. The change
from a purely problem-solving technical process into a complex social pro-
cess has created new requirements for the interactions between nodes in
the system. To answer to these changes, both an increased standardization
of interfaces between nodes and an ability to negotiate their relationship
are required. The ramification of the ability to negotiate is that the nodes in
each network become more and more egocentric. With this local decision-
making capability, each subsystem is able to make strategic decisions for
itself, e.g., decisions regarding if it should remain in the network or leave
for a new coalition.

Hence, what once could be modeled as a network of dedicated, loyal, and
centrally controlled problem-solving nodes has now evolved into a coalition
of autonomous and egocentric nodes which always attempt to maximize
their own utilities. However, the sustainability of the SoS and, thereby, the
long term profits of the subsystems themselves are dependent on realization
by subsystems of the advantages of a sustainable SoS. Systems like these
are often termed collaborative networks, extended enterprises, virtual networks, et
cetera. This kind of extended network requires different tools, methods, and
methodology than the ones proposed for a concurrent engineering process
two decades ago.

7.6 Conclusion
The scientific area of SoS aspires to understand and improve development
and operation of very large and complex sociotechnical systems. Due to the
diversity of different SoS, a well-defined classification of concepts is a neces-
sity to establish a unified area of research and, thereby, to achieve its objec-
tives. A high-level definition has therefore been proposed and amended
with generic properties that most SoS exhibit. The amended properties are,
however, not enough to separate between different sociotechnical systems.
Therefore, a differentiation is proposed between SoS with and without
redundant high-level subsystems, respectively labeled SoS type I and SoS
type II. While lesser complex systems can be developed with traditional
centralized methodology, the characteristics, structure, and dynamics of
distributed networks cannot be fully captured without using decentralized
methodology. That is, SoS that are developed with traditional methodology
do not reach their full potential.

Chapter seven: Definition, classification, and methodological issues 205

References
 1. Magee, C. and O. de Weck. 2004. Complex system classification. Proceedings

from Fourteenth Annual International Symposium of the International Coun-
cil on Systems Engineering—INCOSE, Toulouse, France. INCOSE.

 2. Bjelkemyr, M., D. Semere, and B. Lindberg. 2007. An engineering systems per-
spective on system of systems methodology. Proceedings of 1st Annual IEEE
Systems Conference, Honolulu, HI.

 3. Maier, M. W. 1998. Architecting principles for systems-of-systems. Systems
Engineering 1:267–284.

 4. Kuras, M. L. and Y. Bar-Yam. 2003. Complex Systems and Evolutionary Engi-
neering. AOC WS LSI Concept Paper.

 5. Heylighen, F. 1997. Evolutionary theory. In Principia Cybernetica Web, eds. F.
Heylighen, C. Joslyn, and V. Turchin. Principia Cybernetica, Brussels.

 6. Heylighen, F. Self-organization. In: Principia Cybernetica Web, eds. F. Hey-
lighen, C. Joslyn, and V. Turchin. Principia Cybernetica, Brussels.

 7. Bedau, M. A. 1997. Weak emergence. In Philosophical Perspectives 11: Mind,
Causation, and World. Blackwell Publishers, Oxford, pp. 375–399.

 8. Johnson, C. W. 2006. What are emergent properties and how do they affect the
engineering of complex systems? Reliability Engineering and System Safety
91:1475–1481.

 9. Newman, M. 2003. The structure and function of complex networks. SIAM
Review 45:167.

 10. Watts, D. and S. Strogatz. 1998. Collective dynamics of ‘small-world’ networks,
Nature 393:409–410.

 11. Braha, D. and Y. Bar-Yam. 2004. The topology of large-scale engineering prob-
lem-solving networks. Physical Review E, vol. 69, 2004.

 12. Encyclopedia Britannica. 2007. Production system. http://www.britannica.
com/eb/article-9106303.

 13. CIRP. 2004. Wörterbuch der Fertigungstechnik/Dictionary of Production
Engineering/Dictionnaire des Techniques de Production Mechanique Vol. 3:
Produktionssysteme/Manufacturing Systems/Systèmes de Production. Inter-
national Academy of Production Engineering. Springer, New York.

 14. Merriam-Webster. 1999. Merriam-Webster’s Collegiate Dictionary. Merriam-
Webster.

 15. Bar-Yam, Y. 2003. When systems engineering fails—toward complex systems
engineering. In Systems, Man and Cybernetics, 2003. IEEE International Con-
ference on, vol. 2, pp. 2021–2028.

 16. Bjelkemyr, M. and B. Lindberg. 2007. The effects of limits to human abilities
on system-of-systems properties. Proceedings of Swedish Production Sympo-
sium, Gothenburg, Sweden.

 17. Aganovic, D., M. Bjelkemyr, and B. Lindberg. 2003. Applicability of engineering
design theory on manufacturing system design in the context of concurrent
engineering. In Methods and Tools for Co-operative and Integrated Design, S.
Tichkiewitch and D. Bressaud, eds. Kluwer Academic Publishers, pp. 145–158.

 18. Yang, K. and B. S. EI-Haik. 2003. Design for Six Sigma: A Roadmap for Product
Development. McGraw-Hill Professional, New York.

 19. ModArt. 2007. Modelldriven Artikeltillverkning. http://modart.iip.kth.se/.
November 2007.

206 Marcus Bjelkemyr, Daniel Semere, and Bengt Lindberg

 20. Vaughn, A., P. Fernandes, and T. Shields. 2002. Manufacturing System Design
Framework Manual. Manufacturing Systems Team of the Lean Aerospace Ini-
tiative, Massachusetts Institute of Technology Cambridge, MA.

 21. Fritz, S. et al. 1994. A survey of current methodologies for manufacturing sys-
tem design. In Computer Integrated Production Systems and Organizations:
The Human-Centred Approach, F. Schmid, S. Evans, A. W. S. Ainger, and R. J.
Grieve, eds. Springer, pp. 228–253.

 22. Norman, D. O. and M. L. Kuras. 2004. Engineering Complex Systems, MITRE
Technical Paper, http://www.mitre.org.

207

chapter eight

Policymaking to reduce
carbon emissions
an application of system-
of-systems perspective

Datu Butung Agusdinata, Lars Dittmar,
and Daniel DeLaurentis

Contents

8.1 Introduction.. 208
8.2 Technical approach ... 209

8.2.1 System-of-systems (SoS) perspective .. 209
8.2.2 Policy analysis framework ... 210
8.2.3 Adaptive policy approach .. 211
8.2.4 Exploratory modeling and analysis (EMA) 211

8.3 Case: The Dutch residential sector .. 212
8.4 SoS specification for the residential sector .. 213

8.4.1 Computer Model .. 214
8.4.1.1 α Level ... 216
8.4.1.2 β Level.. 216
8.4.1.3 γ Level .. 217
8.4.1.4 δ Level .. 220

8.4.2 Computational experiments .. 221
8.5 Adaptive policy design ...222

8.5.1 Trajectories of carbon emission reduction222
8.5.2 Circumstances required to achieve 2025 target222
8.5.3 Conditions and guidance for policy adaptation 224
8.5.4 Analysis of Case1 ...225
8.5.5 Analysis of Case2 ..227
8.5.6 Implications for policy design ...229

8.6 Concluding remarks ...229
Acknowledgments ..230
References ..230

208 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

8.1 Introduction
It has been widely acknowledged that tackling the problem of climate change
entails dealing with the complex and uncertain nature of the issue [1,2]. More
specifically, complexity in policymaking stems from:

a system that includes people, social structures, por-
tions of nature, equipment and organizations; the
system being studied contains so many variables,
feedback loops and interactions that it is difficult to
project the consequences of a policy change. Also, the
alternatives are often numerous, involving mixtures of
different technologies and management policies and
producing multiple consequences that are difficult to
anticipate, let alone to predict ([3], p. 12–13).

In addition to this, a successful climate policy increasingly requires con-
siderations that cut across cultural and national boundaries and decisions of
consequence over a generation or more [2].

Uncertainty, on the other hand, stems from incomplete knowledge and
variability in the scientific, socioeconomic, and political aspects as well as
the long-term time horizon involved in policymaking [4,5]. The result is a
condition of deep uncertainty, in which analysts and the parties involved to
a decision do not know or cannot agree upon (1) the appropriate models to
describe interactions among a system’s variables, (2) the probability distribu-
tions to represent uncertainty about key parameters in the models, or (3) how
to value the desirability of alternative outcomes [5].

It is argued here that the notion of complexity and uncertainty are inde-
pendent of each other. Although in many cases they go hand in hand, an
issue that is uncertain is not necessarily complex and vice versa. As a result,
handling them requires different conceptual frameworks and methods.
Since the issue of climate change policy entails handling of both complexity
and uncertainty, an integrative approach that addresses them both is needed.
Further, an integrative approach also requires balance between domains of
inquiry that are most often distinct. The field of engineering design and opti-
mization has developed very capable methodologies for the development of
complex engineering systems under uncertainty. Yet, if these are applied
absent the dynamics exogenous to the engineered system (e.g., policy and
economics), the solutions obtained are less effective, because the problem
formulation is incomplete.

To these challenges, an eclectic number of approaches have been devel-
oped and tried out with mixed success. In dealing with complexity, profes-
sionals from the various domains are typically trained to solve problems
using methods and ideas prevalent to their own domain. The engineering
design paradigm is an example. This legacy is the source of the often-used

Chapter eight: Policymaking to reduce carbon emissions 209

term “stovepipe” in reference to the narrow-scope thinking in a particular
area of specialty knowledge. The real dynamics of the climate change issues,
for example, can only be fully understood “across” stovepipes, spanning var-
ious columns of knowledge, and thus a holistic frame of reference is required
for such transdomain applications. We argue in this chapter that a system-of-
systems (SoS) perspective provides such frame of reference.

In dealing with uncertainty, most analyses supporting the design of
policy for carbon emission reduction are still based on a “predict-then-act
approach” [4]. This approach may result in a pursuit of an optimum policy
based on best estimates of the states of the system and future external devel-
opments or scenarios. Even worse, it may lead to inactions when it is felt that
the uncertainties are too large to warrant any policy [2]. This predict-then-
act approach has been successful in conditions in which there is sufficient
knowledge and information about the system of interest, usually in the form
of probability distributions of relevant variables. But under conditions of
deep uncertainty, it has the risk of significant prediction errors, which may
lead the chosen policy to fail.

This chapter presents an SoS-oriented approach that addresses complex-
ity and uncertainty for policymaking. The approach is described first, fol-
lowed by description of its application to a case in the Dutch residential
sector. The application illustrates how the approach supports a design of an
adaptive policy. The chapter concludes with implications of the approach to
policy design.

8.2 Technical approach
We present an approach to deal with complexity and uncertainty that com-
bines several methods and perspectives. This mixture includes a system-of-
system perspective for dealing with the complexity and an adaptive policy
approach supported by exploratory modeling and analysis for dealing with
uncertainty. On top of that, a policy analysis framework is used to conceptu-
ally model policymaking.

8.2.1 System-of-systems (SoS) perspective

To be able to provide a basis for abstraction and conceptualization of SoS
for policymaking purposes, a lexicon has been developed. DeLaurentis and
Callaway [6] define a lexicon in terms of levels and categories, as shown in
Table 8.1. The categories highlight the presence of a heterogeneous mix of
engineered and sentient systems together constituting the dimensions of the
problem. For each category, there is a hierarchy of components. To avoid con-
fusion, the lexicon employs the unambiguous use of Greek symbols to estab-
lish the hierarchy. Alpha (α), beta (β), gamma (γ), and delta (δ) indicate the
relative position within each category. The collection of α entities and their
connectivity determines the construct of a β-level network, and likewise, a

210 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

γ-level network is an organized set of β networks. Hence, the δ-level can be
described as a network comprised of all of the lower-level networks, whose
constituents span the category dimensions.

The aspiration is that, through use of the lexicon for understanding the
multilevel relationships, decisions of one stakeholder may be appropriately
tailored in cognizance of the actions of others.

8.2.2 Policy analysis framework

The above lexicon is operationalized and tailored for policymaking purpose.
In this regard, we view that policymaking is concerned with making choices
regarding a system in order to change the system outcomes in a desired

Outcomes of Interest
(O)

Policy System

• Internal Factors (I)
• Relationships (R)

External Forces
(X)

Value Systems
(V)

Policies
(P)

Policy System

• Internal factors (I)
• Relationships (R)

Figure 8.1 Policy analysis framework with XPIROV structure.

Table 8.1 SoS Lexicon

Category Description

Resources The entities (systems) that give physical manifestation to the
system of systems

Stakeholders The individual/organizational entities that give intent to the SoS
through values

Operations The application of intent to direct the activity of entity networks
Policies The functions that guide the operation of resource and

stakeholder entities

Level Description

Alpha (α) Base level of entities in each category, further decomposition
will not take place

Beta (β) Collections of β-level systems (across categories), organized in a
network

Gamma (γ) Collections of γ-level systems (across categories), organized in a
network

Delta (δ) Collections of δ-level systems (across categories), organized in a
network

Chapter eight: Policymaking to reduce carbon emissions 211

way [3]. The elements from this framework can be assembled in a structure
labeled “XPIROV” (see Figure 8.1), where:

X •	 = External forces: factors that are beyond the influence of policymak-
ers (i.e., exogenous).
P•	 = Policies: instruments that are used by policymakers to influence the
behavior of the system to help achieve their objectives.
I•	 = Internal factors: factors inside the system (i.e., endogenous) that are
influenced by external forces and policies.
R•	 = Relationships: the functional, behavioral, or causal linkages among
the external forces, policies, and internal factors that produce the out-
comes of interest.
O•	 = Outcomes of interest: measurable system outcomes that are related
to the objectives of policymakers and stakeholders. Hence,

 O R X I P= (, ,) (8.1)

V•	 = Value system of policymakers and stakeholders, which reflects
their goals, objectives, and preferences. The value system contains the
criteria for indicating the desirability of the various policy outcomes
based on the resulting outcomes of interest.

As the policy analysis framework is operationalized within the SoS per-
spective, the result is a network of interdependence policy systems across
various levels (see Figure 8.3).

8.2.3 Adaptive policy approach

In contrast to the predict-then-act approach, the adaptive approach can be
characterized in several ways [7]. First, it does not require that all uncertain-
ties are resolved before a policy can be designed and implemented. Second, it
also makes explicit the aspect of learning in resolving the uncertainties. Third,
it uses a monitoring system with triggers that call for policy adaptations.

It has been demonstrated, for example, that adaptive policy can correct
and therefore avoid the cost as a result of the failure of optimal policy [8].

8.2.4 Exploratory modeling and analysis (EMA)

To support the design of an adaptive policy, exploratory modeling and analy-
sis (EMA) method is employed. EMA helps to reason about long-term system
behavior by exploring as broad assumptions about policy system representa-
tion as it is useful and resources allow [9]. It is particularly suitable in the con-
ditions under deep uncertainty in which actors involved in a decision do not
know or cannot agree on appropriate system representations. These cover,
among other things, uncertainty in the external scenarios, model parameters,

212 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

and structural uncertainty. Under this condition, no single model can appro-
priately represent the system. However, even such “bad” or “wrong” mod-
els can aid in learning, reasoning, and creating mental models about system
behavior [10,11].

The key for performing exploratory modeling is computational experi-
ments. One computer run can be considered as one hypothesis about the
system manifestation. Each run will use one unique set of system represen-
tations. Under each system representation, the performances of a set of poli-
cies are calculated. In this way, exploratory modeling treats one hypothesis
of system representation and its policy consequences as one deterministic
hypothesis, that is, how the system will behave for a particular policy. This
is an important distinctive feature of the method, because rather than trying
to predict system behavior, it reasons about the behavior, asking what would
happen if the guess were right. With a large number of hypotheses one can
have a feel of the possible range of system outcomes.

We now illustrate the application of the approach on policy measures to
reduce carbon emissions in the case of the Dutch residential sector.

8.3 Case: The Dutch residential sector
In the Netherlands, residential energy use accounts for 17% of the national
final energy consumption in the year 2000 (Figure 8.2(a)). The Netherlands

(a) Final Energy Consumption in the
Netherlands

Industry

Transport

Households

Other

0%

20%

40%

60%

80%

100%

(b) Final Energy Consumption of Dutch
Households

0
100
200
300
400
500
600

(P
J)

Electricity
Other
Natural gas

(d) Breakdown of Residential Energy
Use in 2000

Cooking
(nat. gas)

3%

Warm Water
(nat. gas)

16% Space
Heating
(nat. gas)

65%
Electricity

16%

 (c) Residential Warm Water and Space
 Heating Supply by Fuel in 2000

Natural Gas
94%

Electricity
4%

District
Heating

1%
Oil Products

1%

200019951990198519801975 200019951990198519801975

Figure 8.2 Structural indicators of residential energy use in the Netherlands: (a)
Final energy consumption by sector [13]. (b) Final energy consumption of Dutch
households [13]. (c) Residential warm water and space heating supply by fuel in 2000
[14]. (d) Breakdown of residential natural gas use in 2000 [15].

Chapter eight: Policymaking to reduce carbon emissions 213

has the second-largest natural gas reserves in Europe, the highest level of
natural gas penetration worldwide, and nearly all Dutch households (ca.
97%) are connected to the natural gas grid [12]. As consequence, residential
space and water heating demand is met almost exclusively by natural gas,
followed by electricity and district heat (see Figure 8.2(c)).

Virtually every Dutch household uses natural gas for space heating, warm
water production, and in small proportions for cooking (see Figure 8.2c,d).
Together, these energy demand categories account for about 84% of house-
hold final energy consumption, while 16% of final energy consumption can
be attributed to electricity used for lighting and appliances (see Figure 8.2d).
Direct residential CO2 emissions contribute 11% to the total energy-related
CO2 emissions of the Netherlands (Table 8.2) [16].

Policymakers have long recognized the potential contribution the residen-
tial sector can make to reducing carbon dioxide emissions. In fact, since the
first oil crises in 1973, the residential sector was the subject of a vast number of
energy conservation efforts and, more recently, carbon restraint policies [17].
Average energy consumption for space heating and hot water production
fell from about 100 GJ of natural gas per year and dwelling in the late 1970s
to 67 GJ in 2000 [15] at approximately the same average dwelling area [18]. In
spite of these efforts, various studies indicate that the potential for energy
efficiency improvements within the built environmental is still enormous,
especially in the existing building stock [19,20]. Furthermore, the Dutch gov-
ernment has established the policy ambition to reduce carbon emission by
60%–80% in 2050 compared to the 1990 level [21]. In the meantime, the Euro-
pean Commission has also issued an intermediate target of reducing carbon
emissions in 2020 by 20% compared to the 1990 level [22]. The residential
sector is considered to be one of the keys to reach these ambitious targets.
However, since the energy-saving potential for the existing dwelling stock is
much larger than that related to the stricter building codes for new homes,
there is a need of policies that do not address new construction but also par-
ticularly address the energy-saving potential in the existing stock of dwell-
ings. Amongst others, subsidy schemes for energy refurbishment of existing
dwellings provide one such policy measure.

8.4 SoS specification for the residential sector
For each SoS level (denoted by Greek symbols) and from both the supply and
demand side, the relevant policy systems are specified by XPIROV elements

Table 8.2 Temperature Corrected Direct CO2 Emissions of Dutch Households [16]

1990 1995 2000

Residential CO2 Emissions [Mton] 22,2 21,9 21,4
Index 1990 = 100 100% 99% 96%

214 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

(see Figure 8.3). External forces (X) and policies (P) act upon the policy sys-
tem, whose structure is defined by its internal factors (I) and relationships
(R). The interactions among such factors result in the outcome of interest (O),
whose desirability is determined by decision makers’ value system (V). This
specification is based on the work of Agusdinata [23].

For the supply and demand side, each policy system across the SoS levels
is briefly described as follows:

α•	 level–At the supply side, the policy system is the heating technology inno-
vation system, in which private and public research institutions attempt
to produce more efficient heating technology at affordable cost. At the
demand side, the policy system is the dwelling thermal envelope system,
which comprises the state of heating installations and thermal insulation.
β•	 level–At the demand side is the heat consumption system in which
house occupants decide on, depending on their life style, how they
consume energy for heating. The level of energy consumption, which
results in energy costs that occupants have to pay, depend also on,
among others, weather conditions, energy prices, and to a certain extent
their disposable income. For the supply side no relevant policy system
is considered.
γ•	 level–At the supply side is the heating infrastructure system, in which
network operators invest on the infrastructure network. At the demand
side is the dwelling investment system, in which housing developers
and home owners invest on the state of housing stocks. For both policy
systems, investment decisions are made based on profitability criteria
(e.g., net present value (NPV) and payback period). Investment deci-
sions on energy cost–saving technology are based on various factors
such as energy prices and incentives given to them (e.g., subsidy).
δ•	 level–At the supply side is the renewable energy system in which poli-
cies are designed to influence the increase of renewables in the energy
supply. At the demand side is the built-environment system in which
the main concern is the level of carbon emission and the associated cost
to achieve the policy goal of reducing the emission level. Both policy
systems have the Dutch government as controlling actor. To influence
the performance of the SoS, they can use policy instrument such as
subsidy and regulation on building code.

From the SoS perspective, each level requires a unique set of policies. As
a whole, the combinations of policies and decisions may form a concerted
effort to influence the outcome (i.e., carbon emission level).

8.4.1 Computer Model

For our computational experiments we made use of the Dutch Residential
Energy Model (DREM) [24]. DREM is an integrated, dynamic model that

Chapter eight: Policymaking to reduce carbon emissions 215

• C
ar

bo
n

em
iss

io
ns

• P
ol

ic
y c

os
ts

• E
m

iss
io

n
fa

ct
or

• I
nc

en
tiv

es
 an

d
re

gu
lat

io
ns

 f
or

 en
er

gy
 sa

vi
ng

s

• I
nv

es
tm

en
t i

n
dw

el
lin

g
 r

et
ro

fit

• E
ne

rg
y d

em
an

d
fo

r h
ea

tin
g

• W
ea

th
er

 co
nd

iti
on

s

• E
ffi

ci
en

cy
 an

d
co

st
s

 o
f H

ea
tin

g
ge

ne
ra

to
r

 t
ec

hn
ol

og
y

• L
ea

rn
in

g
fa

ct
or

• I
nc

en
tiv

es

• C
om

m
er

ci
al

 v
al

ue
• E

ffo
rts

 in
 in

no
va

tio
n

• I
nc

en
tiv

es
• E

ne
rg

y p
ric

es
• D

isp
os

ab
le

 in
co

m
e

• P
er

fo
rm

an
ce

 s
ta

nd
ar

ds
• I

nc
en

tiv
es

• E
ne

rg
y

 c
on

su
m

pt
io

n
• S

ha
re

 o
f r

en
ew

ab
les

• P
ro

te
ct

io
n

of
 e

nv
iro

nm
en

t

• P
ro

fit
ab

ili
ty

• I
nv

es
tm

en
t o

n
 n

et
wo

rk
 ac

ce
ss

ib
ili

ty

• S
ta

te
s o

f n
et

w
or

k

• I
nc

en
tiv

es
 an

d
 R

eg
ul

at
io

ns
 fo

r
 d

ev
el

op
m

en
t o

f
 r

en
ew

ab
le

s

• S
to

ck
 o

f r
en

ew
ab

le
s

• R
eg

ul
at

io
ns

δ

Re
ne

w
ab

le
s

ac
ce

ss
 to

 g
rid

• N
et

 p
re

se
nt

 v
al

ue
 (

N
PV

)

• N
o.

 p
op

ul
at

io
n

• H
ou

se
ho

ld
 si

ze

• E
ne

rg
y c

os
ts

• D
w

el
lin

g
he

at
in

g
 e

ffi
ci

en
cy

• I
nd

iv
id

ua
lis

tic
 a

nd
 so

ci
al

 v
al

ue
s

• L
ife

 st
yl

e

• H
ea

tin
g

in
st

al
la

tio
n

• S
ta

te
 o

f t
he

rm
al

in
su

lat
io

n

• R
at

e o
f d

w
el

lin
g

 r
et

ro
fit

• D
w

el
lin

g
st

oc
k

D
ut

ch
 B

ui
lt

En
vi

ro
nm

en
t

Sy
st

em

D
w

el
lin

g I
nv

es
tm

en
t

Sy
st

em

H
ea

t C
on

su
m

pt
io

n
Sy

st
em

D
w

el
lin

g Th
er

m
al

En
ve

lo
pe

 S
ys

te
m

D
ut

ch
 H

ea
tin

g
In

fra
str

uc
tu

re
 Sy

ste
m

In
no

va
tio

n
(R

&
D

)
Sy

st
em

D
ut

ch
 R

en
ew

ab
le

En
er

gy
 S

ys
te

m

• E
ne

rg
y s

ec
ur

ity

• P
ay

ba
ck

 p
er

io
d

• P
ro

fit
ab

ili
ty

 an
d

 s
oc

ial
 re

sp
on

sib
ili

ty

• P
ro

te
ct

io
n

of
 e

nv
iro

nm
en

t

γβα

Le
ve

l
Su

pp
ly

 si
de

D
em

an
d

si
de

Fi
gu

re
 8

.3

Sp
ec

ifi
ca

ti
on

 o
f S

oS
 fo

r
po

lic
ym

ak
in

g
to

 r
ed

uc
e

ca
rb

on
 e

m
is

si
on

s
in

 th
e

re
si

de
nt

ia
l s

ec
to

r.

216 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

simulates changes to the dwelling stock and associated environmental
impact in terms of carbon dioxide emissions. The model spans a simulation
horizon of 50 years, from 2000 to the year 2050, discretized into 5-year time
segments. DREM is a vintage stock model, dividing the total stock of capital
(dwellings and heating equipment) into vintages, based on their period of
construction. The different vintages each embody the techno-economical
properties of the time in which they were built, staying attached until they
are retired or refurbished. DREM simulates the evolution of the residential
capital stock over time through retirements, new construction, refurbish-
ment of existing dwellings, and initial as well as replacement purchases
of heating equipment [24]. The modeling approach is essentially based on
bottom-up principles, explicitly simulating the thermal performance of a
set of 26 representative dwelling types and the penetration and impact of
different heating systems providing domestic hot water and space heat.
Altogether DREM provides a framework for systematically exploring future
energy use and associated carbon emissions from the Dutch dwelling stock
across a variety of uncertainties such as demographics, investment behav-
ior, fuel prices, energy policy, and technological development.

The SoS framework introduced above can be found back in the model
structure in the form of functional relationships and system variables. The
specification of the uncertainty space to be explored is represented through a
range of system variables, which are described below (see Table 8.3):

8.4.1.1 α Level
On the supply side, technological devolvement is modeled by the well-
known concept of technological experience curves [25,26], describing cost
reductions of technologies as a function of accumulated experience in form
of units installed.

 Inv k t I k CU k t LR(,) () (,)= ⋅ −
−

0 1 (8.2)

where I0 is the initial investment cost, CU is the experience in form of cumula-
tive installed units, and LR is the learning rate. Uncertainties are expressed
through a range of learning rates (LR), which measures the steepness of the
experience curve. Large values of LR indicate a steep curve with a high learning
rate. Technologies considered for learning are solar thermal systems, electric-
driven heat pumps, gas driven heat pumps, and micro-CHP applications.

8.4.1.2 β Level
Energy price uncertainties are captured in a range of annual price growth
multipliers (G for natural gas and E for electricity), which are divided over
two periods: 2000–2025 and 2025–2050. The changes of energy price are mod-
eled by a compound growth.

Chapter eight: Policymaking to reduce carbon emissions 217

8.4.1.3 γ Level
Market shares of competing heating technologies are simulated by a logit
market sharing function [27,28], which assumes that energy users face a set
of heating technologies following a Weibull cost price distribution with a
shape parameter (LT), common to all technologies. The market share of a
technology is equal to the probability that this technology shows lower cost
than any of the competing options. The closed form of the logit sharing func-
tion is given by:

 MS k
c k

c k

LT

LT

k

n()
()

()
′ = ′ −

−∑
 (8.3)

where MS (k′) is the market share of technology k′, c(k)are the “intrinsic
costs”[28] of the k-th technology, and LT is Weibull shape parameter. The

Table 8.3 Specification of System Variables and Their Plausible Range

Level System Variable Description and Symbol Value Range

α Learning rates for four
technologies

LR1: electricity-driven
heat pump

[10%, 20%]

LR2: solar thermal
heating systems

LR3: micro-CHP
LR4: gas-driven heat pumps

β Annual growth of gas price G1 (2000–2025) [2%, 4%]
G2 (2025–2050) [2%, 6%]

Annual growth of
electricity price

E1 (2000–2025) [1%, 3%]
E2 (2025–2050) [1%, 5%]

γ Discount rate DR [5%, 20%]
Parameter lambda
technology

LT [2, 12]

Demolition rate RET [0,4]
Acceptable payback period PB [5, 10] years
Parameter lambda
refurbishment

LF [2, 6]

δ Subsidy level SUB1 (2000–2025) 20 €/ton CO2
SUB2 (2025–2050) 20 and 50 €/ton CO2

Standard for building
energy performance

CODE [2.5%, 5%]

Growth rate of household
size

HZ [–0.4%, –0.2%]

Rate of population growth POP [–0.5%, 0.5%]

218 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

Weibull distribution’s shape parameter measures the variance in the market;
a low LT implies that technology market shares are distributed relatively
uniformly among all competing technologies, even if their costs differ sig-
nificantly. For high values of LT, on the other hand, the lowest cost technolo-
gies gain proportionately higher market shares (see Figure 8.4).

The logit function allocates market shares based on the annual cost equiv-
alents of energy supply, which include annualized investment costs, opera-
tion and maintenance costs, fuel costs for space heating and domestic hot
water, and finally, the benefits from cogeneration technologies in the form
of avoided electricity purchase and sale of surplus electricity. We consider
the time preference of capital investment in the form of discount rate (DR),
which is used to annualize the investment costs.

We model four energy efficiency refurbishments, viz. improved thermal
performance of roof, walls, floor, and glazing. For each dwelling component,
four standards, progressively improving the energetic performance of the
respective dwelling components, compete for market share. The different
standards are given in Table 8.4 in terms of their u-values. The u-value is the
measure of the rate of heat loss through a component, the lower the u-value
the lower the heat losses.

0%

50%

100%

0.0 0.5 1.0 1.5 2.0
Relative Costs (Tech A/Tech B)

M
ar

ke
t S

ha
re

 T
ec

h
A

2 4 12
LT=

Figure 8.4 Market share function based on parameter LT.

Table 8.4 u-Values of Refurbishment Options

Component (i) [W/m2.K]

Standard (st)

1 2 3 4

Windows 2.0 1.60 1.20 0.70
Walls 0.77 0.4 0.33 0.25
Roof 0.40 0.33 0.25 0.20
Floor 0.50 0.40 0.33 0.25

Chapter eight: Policymaking to reduce carbon emissions 219

DREM links the logit approach to a so called payback acceptance curve
(PAC) in order to simulate both the rate of refurbished each period and the
market share of the different insulation standards endogenously. The PAC
describes the percentage of consumers that would adopt a refurbishment
standard if it provided an acceptable critical payback. The simple payback
time is given by:

 PB i st
I i st

E i st Pe

(,)
(,)

(,)
= ∆

∆ ⋅ (8.4)

where PB(i, st) = simple payback time of refurbishment standard st for dwell-
ing component i, ΔI = additional investment costs of the refurbishment stan-
dard st, ΔE = resulting energy savings, and Pe = energy price.

The logit function allocates market shares based on the comparison of
the paybacks, implying that the market share of a particular refurbishment
standard is equal to the probability that this standard shows lower payback
than any of the competing ones.

 MS st
PB st

PB st

LF

LF

st

n()
()

()
′ = ′ −

−∑
 (8.5)

where MS(st′) is the market share of standard st′, PB(st) is the “intrinsic pay-
back” of the standard st, and LF is Weibull shape parameter. The Weibull
distribution’s shape parameter, LF, represents the diversity in the market.
For high values of LF, the standard with lowest payback gains highest mar-
ket shares, while for low values of LF, market shares are relatively evenly
distributed (compare also the above explanations of Equation 8.5 and see
Figure 8.4).

We use the mean of the minimum payback distribution, obtained from
the logit, and estimate therewith the rate of refurbishment in a PAC. The
mean of the minimum payback distribution is given as [27,28]:

 PB i PB i stAV
st

LF LF
() (,)=

∑ − − 1

 (8.6)

where is PBAV is the mean payback of component i across standards st, PB is
the intrinsic payback of the standard st, and LF is the Weibull distribution’s
shape parameter.

The PAC is assumed to be a standard logistic function:

 RR i RR i
e PB i PBAV

() ()max ((()))= ⋅ −
+

− −1

1
1

 (8.7)

220 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

where RR = rate of refurbishment of dwelling component i, RRmax = techni-
cal refurbishment potential of component i, PBAV = minimum mean payback,
and PB = acceptable payback. For each component, the rate of refurbishment
represents the technical potential multiplied by the share of customers that
would accept the payback. The PAC is defined such that in 50% of the cases
refurbishment will be undertaken, subject to the condition that the payback
period equals the acceptable value (PB) (see Figure 8.5).

Finally, uncertainty about the rate of housing demolition (RET) is explored
with five empirically established survival functions of Dutch dwelling stock,
describing the demolition of dwellings as a function of their age [29–31]. These
survival functions differ in the rate of dwelling demolition: for RET = 0 the
demolition rate is the highest, and for RET = 4 the lowest.

8.4.1.4 δ Level
We test two subsidy arrangements to stimulate energy efficiency refurbish-
ments in housing buildings. The first one is to employ a 20 € subsidy per ton
CO2 avoided for the whole period of 2000–2050 (i.e., SUB1 = SUB2 = 20). The
second design is to provide a 20 € subsidy for the 2000–2025 period and a
50 €/tCO2 for 2025–2050 (i.e., SUB1 = 20, SUB2 = 50). These subsidies directly
influence the payback time of the respective refurbishment measures, i.e.:

 PB i st
I i st SUB CO i st

E i st Pe

(,)
(,) (,)

(,)
= ∆ − ⋅ ∆

∆ ⋅
2 (8.8)

where PB(i, st) = simple payback time of refurbishment standard st for dwell-
ing component i, SUB = subsides, ΔCO2 = CO2 emissions avoided over the
lifetime of the insulation standard st, ΔI = additional investment costs of the
refurbishment standard st, ΔE = resulting energy savings, and Pe = energy
price. As can be seen by inspection of Equation 8.6, increasing subsidy

0%

25%

50%

75%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minimum Mean Payback

Ra
te

 o
f R

ef
ur

bi
sh

m
en

t PB = 5 PB = 10

Figure 8.5 Sample payback acceptance curve.

Chapter eight: Policymaking to reduce carbon emissions 221

decreases the payback time, which in turn leads to higher investments and
hence to higher CO2 reductions.

Furthermore, different regimes of building codes (CODE) are imposed
on the construction of new dwellings. Tightening of building codes in the
period 1996–2006 caused a reduction of energy use for space heating and
hot water production for new dwellings of about 5% per year on average
[32]. We assume a range of 2.5% to 5% of average annual reductions realized
in new dwellings as result of different scenarios of future building codes.
Finally, occupation density of dwellings is explored by the lifestyle variable
household average size (HZ), and uncertainty about the future activity of the
sector by a population growth multiplier (POP).

8.4.2 Computational experiments

Computational experiments are carried out across the uncertainty space
defined in the previous section. We use CARs (Computer Assisted Reason-
ing System) Software to perform the experiments [33]. The software treats
a model (in this case a spreadsheet model) as a black box and maps model
inputs to outputs, creating a database of model runs. A set of inputs is cre-
ated by Latin-Hypercube sampling (e.g., [34]). We take 50,000 samples of data
sets across the uncertainty space over the 50-year period. Figure 8.6 illus-
trates the results of these model runs in terms of a “scenario funnel,” captur-
ing the entire solution space generated. Additionally, some randomly chosen
realization pathways are plotted.

We derive the pattern of behavior on which the policy adaptation is based,
using a pattern recognition process called Classification and Regression Tree
(CART) (e.g., [35]). It applies a nonparametric classification algorithm, which
consists of a sequence of binary split mechanism, to the database of model
runs. As a result, we obtain a classification tree of input variables with end

0

5

10

15

20

25

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

 C
O

2 E
m

iss
io

ns
 (M

t)

Figure 8.6 Scenario funnel of future residential CO2 emissions from space heat and
warm water production.

222 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

nodes of categories of model outputs (e.g., category of emission level). On the
input variables, each level of split determines the importance of the variables
in the classification process; the higher the hierarchy of the split, the more
important the variable is in influencing the output variable.

8.5 Adaptive policy design
8.5.1 Trajectories of carbon emission reduction

Based on the policy target information in Section 8.3, we establish several tra-
jectories for carbon emission reduction resulting from energy used for space
heating and warm water production in the residential sector (see Figure 8.7).
As a policy target, the carbon emission level should be reduced to around 15
Mton in 2025, which corresponds to a reduction of about 30% compared to
1990 levels. Furthermore, the emission should be brought down to around 10
Mton in 2050 (55% reduction). A policy can be considered as a success when
the emission level in 2050 is less than or equal to 10 Mton.

In order to illustrate the adaptive policy approach, we run a hypothetical
case that is divided into two parts. The first part covers the 2000–2025 period
in which policies are implemented under uncertainties. The second part cov-
ers the 2025–2050 period in which some of the uncertainties are resolved and
policies are adapted, attempting to meet the policy target.

8.5.2 Circumstances required to achieve 2025 target

For the first part, the amount of subsidy allocated to the 2000–2025 period
is 20 €/ton CO2 avoided. To be able to reach the target of around 15 Mton in
2025, certain circumstances must materialize. We put a query to the database

Carbon Emission Reduction Trajectories

5

10

15

20

25

1990 2000 2010 2020 2030 2040 2050

Ca
rb

on
 E

m
iss

io
n

Le
ve

l (
M

t) Realized (assumed) Trajectory

Policy target trajectory: ≥ 55% reduction in 2050

Past Trajectory Policy Adaptation Trajectory

Success

Failure

Figure 8.7 Assumed trajectories of carbon emission reduction.

Chapter eight: Policymaking to reduce carbon emissions 223

of model runs to reveal such circumstances. The query for the 2025 emission
level is set in the range of 14.8–15.2 Mton (category A), emission level greater
than 15.2 (category B), and below 14.8 Mton (category C).

On the resulting (smaller) dataset, we employ a classification tree algo-
rithm that reveals multiple sets of variables that meet the query criteria (see
Figure 8.8). In CART diagram, the splitting variables are shown with their
condition. When the condition is met, the path continues to take the left way,
otherwise to the right of the tree. For example, taking the right-hand side
paths (highlighted in bold lines), the emission target of 2025 can be achieved
when the population growth (POP) is between 0.095% and 0.145%, payback
threshold (PB) above 8.45, and discount rate (DR) lower than 9.25%. In case
that DR is higher than 9.25%, then the demolition function (RET) should be
the ones with faster rate (RET = 0, 1, and 2), implying that more old and less-
energy-efficient buildings need to be demolished.

It is important to note that the application of CART on a large data set
(50,000 in this case) produces a complex tree with many branches and termi-
nal nodes (up to 4000 nodes). Such a complex tree is very good at classifying
existing data but can be poor in classifying new data. So we employ a crite-
rion of minimum cross-validation error to prune the tree ([36]). The result is
a smaller tree that is used to model system behavior. For illustrative purpose,
Figure 8.5 shows a tree with a classification error of 44.7%, meaning that the
CART at this pruning level will misclassify almost 45% of the data (min.
error is 39%). In this case, the precision is sacrificed to gain a broad under-
standing about system behavior under uncertainty.

A

A

A

A

A

B

B

AB

B

A

A

AA

A

A B

B

C

C

B A

C

C C

C

C PB< 7.25

PB< 8.45

DR< 9.25%

RET< 2.5RET< 2.5

DR< 9.15%

LT< 5.85 RET< 0.5

LF< 2.75PB< 6.85

DR< 10.35% DR< 10.85%

PB< 7.15

RET< 2.5

LT< 5.85 LT< 9.25 DR< 10.65%

RET< 2.5 RET< 2.5POP< 0.0325%

POP< –0.245%

POP< –0.0275%

G1< 2.75%

PB< 8.35

POP< 0.095%

POP< 0.145%

Figure 8.8 Circumstances required to achieve 15 Mton policy target in 2025. Cross-
validation error = 44.7% (min. error = 39%). Legend: category A: emission target 2025;
category B: < target; category C: > target; G1: growth rate gas price (2000–2025); LF:
lambda refurbishment; PB: payback threshold; POP: population growth; LT: lambda
technology; DR: discount rate; RET: demolition rate function.

224 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

8.5.3 Conditions and guidance for policy adaptation

Suppose, however, that the circumstances are such that the target of 15 Mton in
2025 cannot be met. Instead, it goes off the target at 16 Mton. Such a path, which
coincides with a long-term scenario study recently carried out in the Netherlands
[37], is depicted as the “realized (assumed) trajectory” in Figure 8.7. A query to
the database of model runs is performed to reveal circumstances that lead to
an emission level of 15.5–16.5 Mton. We also assume that, during the 2000–2025
period, learning and monitoring of the SoS variables takes place (beyond the
scope of this chapter). Such learning enables one to know the realization of the
variables, or to reduce the uncertainty (i.e., a smaller variable range).

The question at this point is, having missed the target of 2025, what condi-
tions are required to bring the emission level to meet the target for 2050 (i.e.,
the “policy adaptation trajectory” in Figure 8.7? To address this problem, one
needs to deal with the path dependency within the SoS, since what can be
achieved in 2050 is more or less constrained by the performance in the first
25 years (2000–2025).

To see the nature of such path dependency, two cases of subsidy arrange-
ment are tested. Case1 is when the 20 €/ton CO2 level of subsidy is main-
tained for the period 2025–2050; Case2 is when the subsidy level is increased
to 50 €/ton CO2 . Using the resulting dataset of 18,596 samples for each case,
we set the range of 2050 emissions level to 10 Mton and below (category
S = policy success) and emissions level above 10 Mton (category F = policy
failure). The CART algorithm is then employed to the data set. The results
are shown in Figure 8.9 (Case1) and Figure 8.11 (Case2).

These resulting CART in the form of “if-then” rules become the basis to
inform the design of adaptive policy. As a whole, CART shows the different

G2< 3.55%

LT< 6.45 LT< 6.45

POP< 0.255% LT< 8.05

POP< 0.195% CODE< 3.45%

E2< 3.85% S

G2< 2.85% F

POP< 0.145% S

S F

LT< 5.35 F

F G2< 3.05%

POP< –0.075% S

PB< 6.45 F

F S

G2< 2.75% E2< 2.15%

CODE< 3.15% S

F RET< 1.5

S F

G2< 2.55% F

F S

POP< 0.225% S

G2< 5.05% CODE< 4.05%

CODE< 3.35% S G2< 5.25% G2< 4.55%

POP< 0.055% S

PB< 6.45 E2< 1.85%

F S S F

LT< 5.55 E2< 2.95%

F E2< 3.95%

RET< 1.5 F

S F

LT< 5.55

F S

S

S F

Bran
ch

1

Bran
ch

2

Figure 8.9 Case1 CART for policy adaptation. Minimum cross-validation error =
20.7%. Legend: category S: policy success; category F: policy failure.

Chapter eight: Policymaking to reduce carbon emissions 225

pathways that lead to emission level category. Each branch describes one set
of circumstances, which differs from other branches, and therefore may shed
light on the trade-offs among variables. The trade-off analysis for the two
cases is described below.

8.5.4 Analysis of Case1

The CART for Case1 in Figure 8.9 shows different conditions that are required
for policy adaptation. In total, there are about 12,800 realizations of SoS vari-
ables (almost 70% of that leads to policy success). Because of the reduced
uncertainty, the misclassification error is around 20%. A subset of these suc-
cessful scenarios is represented by each of the CART branches leading to
category S. For illustration, two branches from Case1 CART (pointing arrows
in Figure 8.9) will be further analyzed and compared. The idea is to illustrate
the trade-off when the growth of gas price is below (Branch1) and above
3.55% (Branch2). In addition, Branch1 involves a distinct splitting variable
demolition function (RET), while Branch2 involves payback threshold (PB).

Following the “if-then” rules given by each of the branches, the applicable
ranges of all SoS variables are then reconstructed using box plots (see Fig-
ure 8.10). Invented by Tukey [38], a box plot provides a summary of statistical
information about smallest observation, lower quartile (Q1), median, upper
quartile (Q2), and largest observation. It indicates variance, skew, and outli-
ers without any assumption of probability distribution.

At each SoS level, the system variables are given. The range in the box
plot y-axis corresponds to the low and high values set in the specification of
system variables specified in Table 8.3. The bar shows the applicable range
in which one system variable, in combination with the range of all others,
should materialize in order to achieve the policy target.

At the α level, there seems to be little difference regarding the realizations
of learning rates of the four technologies considered. In the two branches,
Branch1 and Branch2, the lowest and the highest realizations are similar,
covering almost all the plausible range defined in Table 8.3. In Branch2, how-
ever, the learning rate for micro-CHP (LR3), is allowed to be extended to a
lower value, since the first quartile is now somewhere below 12%.

At the β level, the difference in requirements for the growth of gas price
(G2) is apparent. As the first split of the CART indicates, in Branch1 the G2
occupies the value range below 3.55%. On the other hand, little impact is felt
for the realizations of the growth of electricity price (E2).

At the γ level, one consequence of the fact that G2 realization is lower in
Branch1 is that the value of LT (higher LT represents greater market share
for cost-effective heating technologies) has to be higher compared to the one
in Branch2. What also remarkable is, with low G2, the demolition rate (RET,
given in percentage count of the dataset) in Branch1 has to be higher than
that in Branch2. In the former, the demolition rate is restricted to only RET =
0 and 1 (faster rate), while in the latter it is not restricted.

226 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

At the δ level, there are two apparent trade-offs between population
growth and building codes (CODE). In Branch1, the requirement for more
stringent building codes allows the population to grow at positive level,
to almost 0.25% at the maximum. In Branch2, on the other hand, while the
building code is not so strict (lower range regime), the population is barely
allowed to grow or even has to decline. A positive population growth will
bring the emission level above the 2050 target (i.e., policy failure).

Level Branch1_Case1 (20 €/ton CO2) Branch2_Case1 (20 €/ton CO2)

α

LR4LR3LR2LR1

0.20
0.18
0.16
0.14
0.12
0.10

LR4LR3LR2LR1

0.20
0.18
0.16
0.14
0.12
0.10

β

G2

0.06

0.05

0.04

0.03

0.02

0.05

0.04

0.03

0.02

0.01
E2 G2

0.06

0.05

0.04

0.03

0.02

0.05

0.04

0.03

0.02

0.01
E2

γ PB

10

9

8

7

6

6

5

4

3

2
LF

0.200
0.175
0.150
0.125
0.100
0.075
0.050

DR

12
10
8
6
4
2

LT
RET

Pe
rc

en
t

43210

100
80
60
40
20
0

PB

10

9

8

7

6

6

5

4

3

2
LF

0.200
0.175
0.150
0.125
0.100
0.075
0.050

DR

12
10
8
6
4
2

LT RET

Pe
rc
en

t

43210

100
80
60
40
20
0

δ

HZ

–0.0020

–0.0025

–0.0030

–0.0035

–0.0040

0.0050

0.0025

0.0000

–0.0025

–0.0050
POP

0.050
0.045
0.040
0.035
0.030
0.025

CODE HZ

–0.0020

–0.0025

–0.0030

–0.0035

–0.0040

0.0050

0.0025

0.0000

–0.0025

–0.0050
POP

0.050
0.045
0.040
0.035
0.030
0.025

CODE

Figure 8.10 The applicable range of system variables for policy adaptation Case1.

Chapter eight: Policymaking to reduce carbon emissions 227

8.5.5 Analysis of Case2

We now analyze the case in which, in the 2025–2050 period, the subsidy
is increased from 20 to 50 €/ton CO2. First, as a result of this increase, the
number of successful scenarios (dataset that lead to policy success) rises
from 69% to 76.7%, almost an 8 percentage point increase. So, apparently an
increased subsidy has some impact on the performance of the system.

The CART for Case2 is presented in Figure 8.11. As in Case1, we illustrate
one branch of the “if-then” rule tree (Branch3). Here, we select a particular
branch that has the electricity growth figure (E2) as an influencing variable.
Branch3 is then reconstructed in box plots to identify the applicable range for
each SoS variable (see Figure 8.12).

One particular performance pattern emerges here. At β level, the G2 is
required to grow at a high rate range, whereas E2 at a low rate one. The
combination of G2 and E2 realizations allows the population to grow at
high rate (above 0.25%) at δ level. This pathway is enabled by relatively less
stringent constraints on other variables. Some even have less demanding
requirements, like a low value range for both LT at γ level and CODE at
δ level.

S

S

S F

POP< 0.105%

POP< 0.255%

POP< 0.225%

CODE< 4.05%

CODE< 4.25% CODE< 3.45% CODE< 3.35%

E2< 2.85%

LT< 7.95

POP< 0.225%

POP< 0.135%

POP< 0.085%

E2< 2.45%

G2< 3.05%

F S

S

S

S

S

S

F

F

F

F

F

S

S

G2< 3.15%G2< 3.85%

LT< 6.05

Br
an

ch
3

Figure 8.11 Case2 CART for policy adaptation. Minimum cross-validation error =
16.5%. Legend: category S: policy success; category F: policy failure.

228 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

Level Branch3_Case2 (50 €/ton CO2)

α

LR4LR3LR2LR1

0.20
0.18
0.16
0.14
0.12
0.10

β

G2

0.06

0.05

0.04

0.03

0.02

0.05

0.04

0.03

0.02

0.01
E2

γ PB

10

9

8

7

6

6

5

4

3

2
LF

0.200
0.175
0.150
0.125
0.100
0.075
0.050

DR

12
10
8
6
4
2

LT
RET

Pe
rc
en
t

43210

100
80
60
40
20
0

δ

HZ

–0.0020

–0.0025

–0.0030

–0.0035

–0.0040

0.0050

0.0025

0.0000

–0.0025

–0.0050
POP

0.050
0.045
0.040
0.035
0.030
0.025

CODE

Figure 8.12 The applicable range of system variables for policy adaptation Case2.

Chapter eight: Policymaking to reduce carbon emissions 229

8.5.6 Implications for policy design

The analyses above illustrate the different pathways for policy adaptation needed
to bring the carbon emission level back to the 2050 target. They also highlight
the trade-offs that need to be made regarding realizations of SoS variables.

To benefit from this insight, the evolution of SoS variables needs to be
monitored in order to establish the state of the SoS and hence which pathway
is relevant. For instance, when the population is growing at high rate, Branch3
is more relevant to inform the requirements than Branch1 or Branch2.

The implication for policy design is that policymakers should choose
a policy set based on the feasibility to influence the system variables to
remain in their applicable range. Obviously, there is a trade-off to be made.
It might be the case that influencing the price of gas (β level) by tax, for
instance, is more feasible than influencing the demolition rate (γ level) by
regulation or influencing the building code (δ level). Other policy alter-
natives may have impact on achieving the policy target to reduce carbon
emissions. They might include a fiscal policy to influence the investment
behavior represented by the discount rate (γ level) or an awareness cam-
paign to relax the hurdle for investment on energy efficiency technology
represented by higher payback threshold (γ level). Controversially, one
might envision demographic policies to influence population growth and
household size (δ level), which have a large impact on the emission level.
The choice of a policy set requires careful analysis, which is beyond the
scope of this chapter. The point is that SoS provides a conceptual frame-
work to structure the complexity of policymaking, taking into account the
interactions and possible trade-offs among the SoS levels.

Lastly, in one of the findings, Branch2 suggests that a zero or negative
population growth is required to achieve the policy target. When the popu-
lation actually increases, the target will be out of reach, requiring further
relaxations of system constraints (e.g., higher growth rate of gas price) or
additional policies that promote the use of lower- or zero-carbon fuels. In
this light, it is very relevant to question whether the policy target itself needs
to be adjusted. The approach we propose can be used to test the achievability
of the policy target.

8.6 Concluding remarks
We have demonstrated how the adaptive policy approach can be applied
under conditions of uncertainty, enabling a policy to be adapted as some of
the uncertainties are resolved. Integral to the approach is the exploratory
modeling and analysis method which leads to insights that can be used to
support the design of an adaptive policy.

230 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

Reductions in carbon emission levels from the Dutch residential sector
provide the case study for the methodology demonstration. In particular,
when emissions are off the target, multiple sets of conditions can be iden-
tified to bring the emissions back to the desired level. CART technique in
this case provides insight into the boundaries between policy success and
failure. Further analysis reveals the trade-off among system-of-system vari-
ables and possible pathways required for policy adaptation. Policy design
should then focus on factors that policymakers can feasibly influence. The
system-of-systems perspective, in this case, provides the problem definition
commensurate with the complexities of the problem, allowing for identify-
ing and specifying different kinds of policy systems at various levels to be
influenced by policies.

Acknowledgments
This research is supported by The Next Generation Infrastructure Founda-
tion and by NWO (Dutch Organization for Scientific Research) under the
research program “Managing uncertainties in energy innovations and tran-
sition processes.” We are grateful to the valuable comments from Wil This-
sen, Warren Walker, and Andre Faaij.

References
 1. Hammitt, J. K., R. J. Lempert, and M. E. Schlesinger. 1992. A sequential-decision

strategy for abating climate change. Nature 357:315–318.
 2. Morgan, M. G., M. Henrion, and M. G. Morgan. 1990. Uncertainty: A Guide to

Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge Uni-
versity Press, New York.

 3. Walker, W. E. 2000. Policy analysis; a systematic approach to supporting pol-
icymaking in the public sector. Journal of Multi-Criteria Decision and Analysis
9:11–27.

 4. Lempert, R. et al. 2004. Characterizing climate-change uncertainties for deci-
sion-makers—an editorial essay. Climatic Change 65:1–9.

 5. Lempert, R., S. Popper, and S. Bankes. 2003. Shaping the Next One Hundred Years,
New Methods for Quantitative Long-Term Policy Analysis. The RAND Pardee Cen-
tre, Santa Monica.

 6. DeLaurentis, D. and R. K. C. Callaway. 2004. A system-of-systems perspective
for public policy decisions. Review of Policy Research 21(6):829–837.

 7. Walker, W. E., S. A. Rahman, and J. Cave. 2001. Adaptive policies, policy analy-
sis, and policy-making. European Journal of Operational Research 128(2):282–289.

 8. Lempert, R. J., M. E. Schlesinger, and S. C. Bankes. 1996. When we don’t know
the costs or the benefits: adaptive strategies for abating climate change. Climatic
Change 33:235–274.

 9. Bankes, S. 1993. Exploratory modeling for policy analysis. Operations Research
41(3):435–449.

 10. Hodges, J. S. 1991. Six (or so) things you can do with a bad model. Operations
Research 39(3):355–365.

Chapter eight: Policymaking to reduce carbon emissions 231

 11. Sterman, J. D. 2002. All models are wrong: reflections on becoming a systems
scientist. System Dynamics Review 18(4):501–531.

 12. IEA. 2000. Energy policies of IEA countries: The Netherlands. IEA/OECD, Paris.
 13. CBS. 2006. Statline. Statistics Netherlands.
 14. Oosterhuis, F. and A. E. Nieuwlaar. 1999. Energy use for residential space

heating in the Netherlands 1990–1995: An empirical analysis. Working paper,
Utrecht University, Department of Science, Technology and Society, Utrecht.

 15. BAK. 2000. Investigation of natural gas use by private consumers (in Dutch). 1980–
2000, Amsterdam: Centrum voor Marketing Analyses.

 16. Klein Goldewijk, K. et al. 2005. Greenhouse Gas Emissions in the Netherlands
1990–2003 National Inventory Report 2005. Netherlands Environmental Assess-
ment Agency (MNP), Bilthoven.

 17. Boonekamp, P. G. 2005. Improved Methods to Evaluate Realised Energy Sav-
ings. Doctoral Dissertation, Utrecht University.

 18. Wolbers, R. 1996. Floor area of Netherlands’ dwellings (in Dutch). Department of
Science, Technology and Society (NW&S), Utrecht University.

 19. Petersdorff, C., T. Boermans, and J. Harnisch. 2006. Mitigation of CO2 emissions
from the EU-15 building stock. Beyond the EU Directive on the Energy Perfor-
mance of Buildings. Environmental Science and Pollution Research 13(5):350–358.

 20. Treffers, D. J. et al. 2005. Exploring the possibilities for setting up sustainable
energy systems for the long term: two visions for the Dutch energy system in
2050. Energy Policy 33(13):1723–1743.

 21. Dutch Ministry of Economic Affairs. 2005. Now for Later; Energy Report 2005.
Ministry of Economic Affairs, The Hague.

 22. European Commission. 2004. Housing statistics in the European Union. Euro-
pean Commission, Brussels.

 23. Agusdinata, D. B. 2006. Specification of system of systems for policymaking in
the energy sector. In IEEE SMC System of Systems Engineering Conference, Los
Angeles, CA.

 24. Dittmar, L., A. P. C. Faaij, and W. C. Turkenburg. 2007. DREM: The Dutch Resi-
dential Energy Model. Utrecht University, Department of Science, Technology
and Society.

 25. Wene, C.-O. 2000. Experience Curves for Energy Technology Policy. IEA / OECD,
Paris.

 26. BCG. 1972. Perspectives on Experience. Boston Consulting Group, Boston, MA.
 27. Boyd, D. W., R. L. Phillips, and S. G. Regulinski. 1982. A model of technology

selection by cost minimizing producers. Management Science 28(4):418–424.
 28. Clarke, J. F. and J. A. Edmonds. 1993. Modelling energy technologies in a com-

petitive market. Energy Economics 15(2):123–129.
 29. Johnstone, I. M. 2001. Energy and mass flows of housing a model and example.

Building and Environment 36(1):27–41.
 30. Elsinga, M. and C. Lamain. 2004. Onttrekkings- en overlevingskansen van wonin-

gen. OTB Research Institute for Housing, Urban and Mobility Studies, Delft.
 31. Bekker, P. C. F. 1991. A Lifetime Distribution Model of Depreciable and Repro-

ducible Capital Assets. Ph.D. thesis. VU University Press, Amsterdam.
 32. Blok, K. 2004. Improving energy efficiency by five percent and more per year?

Journal of Industrial Ecology 8(4):87–99.
 33. Evolving Logic. 2005. www.evolvinglogic.com.
 34. Helton, J. C. and F. J. Davis. 2000. Sampling based methods. In Sensitivity Analy-

sis, eds. A. Saltelli, K. Chan, and E. M. Scott. Willey, Chichester.

232 D. B. Agusdinata, L. Dittmar, and D. DeLaurentis

 35. Mishra, S., N. E. Deeds, and B. S. RamaRao. 2003. Application of classification
trees in the sensitivity analysis of probabilistic model results. Reliability Engi-
neering and System Safety 79(2):123–129.

 36. Breiman, L. et al. 1984. Classification and Regression Trees. Wadsworth, Monterey,
CA.

 37. Janssen, L. H. J. M., V. R. Okker, and J. Schuur. 2006. Welfare, prosperity and
quality of the living environment: A scenario study for the Netherlands in 2040
(in Dutch). Background document. Den Haag, Bilthoven, Den Haag: Centraal
Planbureau, Natuurplanbureau, Ruimtelijk Planbureau, Netherlands.

 38. Tukey, J. W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.

233

chapter nine

Medical and health
management system
of systems
Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

Contents

9.1 Systems of systems in medical ultrasonics ..233
9.1.1 Ultrasonic surgery support system...233

9.1.1.1 Segmentation system ...236
9.1.1.2 Registration system ...238
9.1.1.3 Location system .. 239

9.1.2 Summary .. 239
9.2 System of systems in medical imaging .. 240

9.2.1 Image segmentation in cooperation with expert
knowledge system ... 240
9.2.1.1 Growing criteria of general RG 240
9.2.1.2 Growing criteria of RG with expert system 241

9.2.2 Image registration in cooperation with expert
knowledge system ... 243

9.3 System of systems in health management ... 244
9.3.1 Evolution of science, technology, and society 245
9.3.2 The world and problems requiring solutions 245
9.3.3 Health management technology based on causality 245
9.3.4 Application study .. 247
9.3.5 Summary and discussion ... 248

References .. 249

9.1 Systems of systems in medical ultrasonics
9.1.1 Ultrasonic surgery support system

Ultrasonic techniques are widely applied in medicine. The most popular
usage is to image the inside of the human body. Clinical ultrasonic treatment

234 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

is also essential to disrupt objects such as gallstones. All systems consist of
hardware and software. Current medical ultrasonic systems require system
of systems engineering (SoSE) techniques comprising the hardware systems
of an ultrasonic probe, a pulser and receiver, an A/D converter that can rap-
idly process large amounts of data, and the software systems of data synthe-
sis, analysis, and image rendering. In this section, we introduce an ultrasonic
SoS for clinical orthopedic surgery.

An implant is used to reinforce broken bones in orthopedic treatment. An
intramedullary titanium nail that supposedly has no deleterious effects on
the body functions as an implant is inserted into broken bones (Figure 9.1).
During the first step of this procedure, surgeons drive a nail into the femur.

In the second step, the region is opened to drill holes for screws. In the
third step, two screws are positioned into the holes of the intramedullary nail
in the bone, and then the region is closed. Figure 9.2 (a,b) shows typical X-ray
images before and after surgery, respectively. In the second step, surgeons
cannot visualize screw holes in nails hidden in the bone using the naked eye.
Therefore, an X-ray device is often used to locate the holes. Several studies [1,2]

Screw Holes

Figure 9.1 Titanium nails.

(a)

R

R

(b)

Screw
Hole

Figure 9.2 X-ray images of broken bones. (a) Before surgery. (b) After surgery.

Chapter nine: Medical and health management system of systems 235

have examined ways to technically support surgeons and decrease the surgi-
cal duration. However, radiography has the disadvantage of X-ray exposure.
To solve this problem, we developed an ultrasonographic system that can
locate screw holes in intramedullary nails. This system is practical for clinical
applications, because it is sufficiently compact for use on the operating table,
requires no mechanical systems with complex alignments, and the surgical
duration is short. System of systems engineering was required to develop this
system, because it requires several hardware and software systems.

The hardware system consists of a 32-element array probe (ISL Inc.,
ISL1938; Figure 9.3(a)) and a single-axis freehand scanner (Figure 9.3(b)). The
probe performs linear scanning and transmits the data to a personal com-
puter. The scanner transmits x-axis information of all scanning points to the
same computer, which provides the coordinates of the screw holes to sur-
geons. This hardware SoS is shown in Figure 9.4.

The computer system has a software SoS to locate screw holes of intramed-
ullary nails. Our software system consists of the three systems shown in Fig-
ure 9.5. The segmentation system extracts the regions of the screw holes. The

Figure 9.3 Hardware systems.

Scanner System

Array Probe System

Computer System

Hardware
System of Systems

for Visualizing
Nail Holes

Figure 9.4 Hardware system of systems.

236 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

registration system performs the registration between the obtained image and
the true image that is obtained by a digital camera. The location system identi-
fies screw hole positions using a Euclidean translation matrix obtained from
the registration system. The details of the process are as follows.

9.1.1.1 Segmentation system
The array probe system outputs ultrasonic waves. The array probe is scanned
at a distance of 30 mm at 2.0-mm intervals guided by unidirectional freehand
scanning. The 2.0-mm interval is experimentally determined. The sampling
interval is 20 ns. The peak-to-peak value (P-P value) is calculated by the dif-
ference between the minimum and maximum amplitude of every ultrasonic
wave. A feature value map is defined as an image I(x, y) (0 ≤ x ≤ M, 0 ≤ y ≤ N)
consisting of the P-P values with 8-bit intensities from 0 to 255 [3,4]. Fig-
ure 9.6(a) shows a feature value map in which the brightness indicates larger
echoes from the nail, and the nail surface has higher intensity, whereas the
screw holes have lower intensity. We inserted a 2.0-mm interval line into the
map because our scanning interval is 2.0 mm.

First, we determine a gradient g of the long axis as the direction of the
intramedullary nail using Equation (9.1).

 g

x

x f x y

f x y

yy

N

x

M

y

N

x

M

=

−

×

×==

==

∑∑

∑∑
(

(,)

(,)

) (11

11

−−

×

×==

==

∑∑

∑∑

y f x y

f x y

f x yy

N

x

M

y

N

x

M

(,)

(,)

) (,11

11

))

(

(,)

(,)

y

N

x

M

y

N

x

M

y

Nx

x f x y

f x y

==

==

=

∑∑

∑∑
−

×

11

11

1
∑∑∑

∑∑
=

==

×

x

M
y

N

x

M

f x y

1

2

11

) (,)

 (9.1)

where f(x, y) = 1 if I(x, y) > th; = 0, otherwise. The threshold, th, is experimen-
tally determined from the intensity in each feature value map. The knowledge
required to segment screw holes of an intramedullary nail is as follows [3,4].

Segmentation System

Registration System

Localization System

Software
System of Systems
in the Computer

System

Figure 9.5 Software system of systems.

Chapter nine: Medical and health management system of systems 237

Knowledge 1: The average of the intensity is low in the screw holes.
Knowledge 2: The variance of the axis is high on the center line of the

intramedullary nail.

Two fuzzy if–then rules are derived from Knowledge 1 and Knowledge 2.

Fuzzy Rule 1: IF the average, ave(x, y), is LOW, THEN the degree µave is
HIGH.

Fuzzy Rule 2: IF the variance of line, var(x, y), is HIGH, THEN the
degree µvar is HIGH.

The notation ave(x, y) indicates the average of eight neighborhood pixels of
(x, y) in the feature value map. The notation var(x, y) indicates the variance of
the intensity of the line with point (x, y) and gradient g. The fuzzy member-
ship functions are defined in Figure 9.7. In Figure 9.7, maxave and maxvar are
calculated as the maximum values of ave(x, y) and var(x, y), respectively, in
the map. We calculate fuzzy degrees µave(x, y) and µvar(x, y) from Equation (9.2)
and (9.3), respectively.

 µave ave x yx y S a(,) min((),)(,)= LOW (9.2)

 µvar var(,) min((),)(,)x y S vx y= HIGH (9.3)

No scanning area

Hole 1 Hole 2

N

M

O

Hole 1
Hole 2

(b)(a)

Figure 9.6 Feature value map and µhole(x, y).

Degree

0

1.0

HIGH

Degree

1.0

LOW

maxave maxvar
a v0

Figure 9.7 Membership functions.

238 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

Fuzzy singleton function, Save(x,y)(a), is defined as Save(x,y)(a) = 1 if a = ave(x, y); = 0,
otherwise, and Svar(x,y)(v) is defined as Svar(x,y)(v) = 1, if v = var(x, y); = 0, other-
wise. A fuzzy degree, µhole(x, y), is calculated from Equation (9.4).

 µ µ µhole avex y x y x y(,) (,) (,)= × var (9.4)

The degree µhole(x, y) represents the degree of screw holes in the nail; that is,
the hole regions are segmented. Figure 9.6(b) shows the image of µhole(x, y) by
the intensities of 255 × µhole(x, y), in which the gray line indicates the absence
of a scanning line.

9.1.1.2 Registration system
The registration process matches both images and is used to locate screw
holes. A true image (Figure 9.8(a)) is obtained using a digital camera. We first
segment the hole regions from the true image using a sobel filter and region
growing. The resultant image is called a segmented image (Figure 9.8(b)). We
then standardize the resolution of the two images and perform a Euclidean
translation of the image in Figure 9.8(b) to match µhole(x, y) that appears in
Figure 9.6(b); that is, registration between Figure 9.8(b) and Figure 9.6(b). The
concept is shown in Figure 9.9. We calculate the square sum of the differ-
ence, SumD, between the two images using Equation (9.5), where the notation
T(x, y) denotes the intensity of the segmented image.

 SumD x y T x yhole

y

N

x

M

= −
==

∑∑ ((,) (,))255
1

2

1

µ (9.5)

We determine the translation matrix with the minimal SumD and then
translate the image into the desired position.

0 N

M

(a) (b)

Figure 9.8 True image and segmented holes.

Chapter nine: Medical and health management system of systems 239

9.1.1.3 Location system
The positions of the screw holes in the µhole(x, y) image are calculated from
the Euclidean translation matrix, because we know the screw hole positions
in the true image. The location system provides the necessary coordinates of
the screw hole centers, because we know the start position of the scan. The
resultant image is shown in Figure 9.10. Thus, the surgeons know where the
center points of the holes are for precise screw insertion.

9.1.2 Summary

We introduced a SoSE technique for a support system comprising a clinical
ultrasonic support system for locating screw holes during orthopedic sur-
gery. The system is constructed of hardware and software SoSE techniques.
The system complements the surgical technique of inserting screws into
holes in a nail positioned within the human body. The results of our experi-
ments showed that this system provides precise information (1.0 mm margin
of error) about screw holes within about 5 minutes. This level of accuracy

Figure 9.9 Registration.

Hole 1 Hole 2

0

Figure 9.10 Resultant image.

240 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

and processing time are sufficient for clinical applications. As this example
shows, SoSE will be widely applied to future surgical support systems. In
other words, such systems can only be established using SoSE techniques.

9.2 System of systems in medical imaging
Medical image processing of magnetic resonance (MR) imaging, X-ray com-
puted tomography (CT), and radiography play fundamental roles in com-
puter-aided diagnosis (CAD) systems that produce volume visualization
within the body. Although many image processing techniques have been
investigated, only simple techniques such as thresholding and edge detec-
tion have been applied to medical image processing. The principal differ-
ence between medical image processing and general image processing is the
need for specialized knowledge. Although expert knowledge has been used
to provide image processing parameters, to understand and fine-tune these
parameters is difficult and can obstruct the processing of medical images.

This chapter introduces new approaches to construct SoS in medical
image processing by integrating the expert knowledge systems into image
processing systems. In particular, this chapter focuses on the segmentation
and registration of medical images. Fuzzy logic can be applied to represent
the expert knowledge and thus integrate the systems. Some applications are
described to illustrate the effectiveness of these approaches.

9.2.1 Image segmentation in cooperation
with expert knowledge system

Image segmentation is a way to define a region of interest (ROI) from medi-
cal images. For example, ROIs include soft tissues (brain, viscera, etc.), hard
tissues (bone), and tumors. In general, image segmentation methods have no
a priori knowledge of ROI. Therefore, system designers must adjust the image
processing parameters (usually called magic numbers) by trial and error. In
the present SoS, the expert knowledge system includes ROI features such as
location, shape, and intensity, and the image processing system segments
ROIs by evaluating the appropriate region using the expert system.

For example, consider a region-growing (RG) algorithm, which segments
a ROI by recursively including neighboring voxels (or pixels in 2-D images)
that satisfy the growing criteria into the growing regions. Examples of grow-
ing criteria are as follows.

9.2.1.1 Growing criteria of general RG
When a neighboring voxel satisfies all following conditions, the voxel is
included in the growing region.

 [Condition #1] IC ≥ 150 [Condition #2] I′C < 10 [Condition #3] xC < 128

Chapter nine: Medical and health management system of systems 241

IC and I′C are intensity and differential value of the voxel, respectively, and xC
is the x-coordinate value of the voxel.

This growing criterion is designed so that the RG algorithm segments a
region in which intensities of pixels are high, differential values inside the
region are low, and location is left. However, this growing criterion will
undersegment ROI from the image shown in Figure 9.11, because part of the
target region is over the line of xC = 128.

9.2.1.2 Growing criteria of RG with expert system
If the neighboring voxel is that of a ROI, the voxel is included in the growing
region. Whether the neighboring voxel is indeed a voxel of a ROI is evaluated
by the expert system. When the expert system is implemented with fuzzy
if-then rules, the rules can be given as follows.

IF IC is HIGH and I′C is SMALL and xC is LEFT
THEN the degree of belonging to the ROI is HIGH.

HIGH, SMALL, and LEFT are fuzzy linguistic values defined by the fuzzy
membership functions given by Figure 9.12. This fuzzy if-then rule can be
evaluated by Mamdani’s MIN-MAX implementation [5], and a resultant
fuzzy degree belonging to the ROI will be obtained. Then, when the resul-
tant fuzzy degree exceeds a threshold (for example, 0.5), the voxel is included
in the growing region.

This growing criterion based on the fuzzy expert system will correctly
segment the target region from the image shown in Figure 9.11, because the
undersegmented area with the general RG has enough of the features of a
ROI. In addition, because fuzzy if-then rules and fuzzy membership functions
are easy to understand, users can design the rules according to their expert
knowledge.

Figure 9.13 shows applications of a SoS, which comprises image segmen-
tation and expert knowledge systems. Figure 9.13(a) shows segmented MR
images of the human brain that are helpful in understanding cerebral atrophy.

x = 0
y = 0

y = 128

y = 255

x = 128 x = 255

Figure 9.11 Example of undersegmentation by general RG. The gray region is the
target region to be segmented.

242 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

To reconstruct the images, the brain region was segmented by 3-D RG using an
automated threshold finding method, and the segmented region was decom-
posed into brain parts by evaluating the position, intensity, distance, etc. The
threshold finding method and the evaluation system were constructed by
integrating an expert knowledge system [6]. Figure 9.13(b) shows the anatomi-
cal structure of the human head that can be used to plan neurosurgery. These
images were reconstructed from three images produced by three systems: the
first segmented the brain region from MR images, the second segmented the
cerebral artery region from MR angiography images [7], and the third seg-
mented the skull region from CT images, because each imaging modality can
describe regions with high contrast. Figure 9.13(c) shows the cerebral lobes seg-
mented by an active surface model in which a fuzzy expert system evaluates the

1.0 MIDDLE

MIDDLE

SMALL

BIG

D
eg

re
e

RIGHT

xC

I ĆIC

LEFT

MIDDLE
HIGHLOW

0 128 255

0 255

0.0

1.0

D
eg

re
e

0.0
0 255

1.0
D

eg
re

e

0.0

Figure 9.12 Fuzzy membership functions. Left, degree of intensity; middle, degree
of difference; right, degree of location.

(a) (b) (c)

Figure 9.13 (a) Segmented brain parts from MR images. (b) Integration of three
regions segmented from MR, MR angiography, and CT images. (c) Segmented cere-
bral lobes and lateral ventricles from MR images.

Chapter nine: Medical and health management system of systems 243

deforming model [8], and the lateral ventricles are segmented by a watershed
segmentation algorithm in which a fuzzy expert system provides knowledge of
the shape and location [9].

9.2.2 Image registration in cooperation with
expert knowledge system

Image registration is a method of finding appropriate parameters of affine
transformation (such as translation and rotation) of one image so that the
transformed image matches with the other image. It is achieved by search-
ing parameters with maximum matching scores. For example, the matching
score between image IA and image IB can be defined by:

 µ κ κ= +{ }
==

∑∑ I D

y

N

x

M

G x y H x y J x y K x y(,) (,) (,) (,)
00

 (9.6)

where M and N are the width and height of the image, respectively, G(x, y)
and H(x, y) are the intensity values of images IA and IB, respectively, J(x, y) and
K(x, y) are differential values, and κI and κD are weighting parameters.

Equation (9.6) shows that the matching score equivalently evaluates all
pixels in the given image. However, in the human sense, pose/position can
be understood by observing specific areas without actually being able to see
the entire area. For example, consider the silhouette shown in Figure 9.14 (a).
Assume that this image is that of a cup with a handle, and that part of the
cup is covered by an obstacle. That the cup is located with the pose/position
shown in Figure 9.14(b) can be established by observing the protrusion of the
silhouette.

By simulating the human manner of pose/position recognition, the match-
ing score defined by Equation (9.6) can be rewritten as:

 µ

µ κ κ

=

+{ }ROI I D

y

x y G x y H x y J x y K x y(,) (,) (,) (,) (,)
===

==

∑∑

∑∑
00

00

N

x

M

ROI

y

N

x

M

x yµ (,)

 (9.7)

where µROI(x, y) is a fuzzy degree belonging to area of concern, which takes
a value between 0 and 1. Zero degree means that the pixel is completely
ignored, whereas one degree means that the pixel is completely concerned.
For example, by giving areas that must be concerned and areas that must
NOT be concerned by users according to their expert knowledge, the fuzzy
expert system can calculate and provide the fuzzy degree shown in Fig-
ure 9.14(c) to the image registration system.

244 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

Figure 9.15(a) shows an application of the SoS to 2-D/3-D image registra-
tion between a 2-D X-ray image and a 3-D geometric model of a total knee
arthroplasty (TKA) implant [10]. Figure 9.15(b) shows the results of 2-D/3-D
image registration between the 2-D digital radiography (DR) image and 3-D
multi-detector-raw CT (MDCT) images [11]. Figure 9.15(c) shows the results
of 2-D/3-D image registration between a 2-D DR image and a 3-D geometric
model of a total hip arthroplasty (THA) implant. These findings are useful
for investigating the kinematics of knee/hip joints in orthopedic research.

9.3 System of systems in health management
In this section, the notion of health management technology is introduced and
discussed from the viewpoint of SoS. First, the evolution of science, technology,

0.0

1.0
Degree

(a) (b) (c)

Figure 9.14 Image registration with expert knowledge system. (a) Silhouette of a
cup. (b) Pose/position of the cup. (c) Degree of belonging to area of concern.

(a) (b) (c)

Figure 9.15 Three-dimensional pose/position estimation of TKA implant from 2-D
X-ray fluoroscopic image (a) of femoral and tibial bones from 2-D digital radiograph
(b), and THA implant from 2-D X-ray fluoroscopy image. (c) Upper and lower panels:
raw images and 3-D images reconstructed by the proposed systems, respectively.

Chapter nine: Medical and health management system of systems 245

and society is briefly discussed to define the problems to be solved by observ-
ing the world as an organization of human beings, artifacts, and nature. As one
important solution to problems, the notion of the health management technol-
ogy centered on causality is proposed and discussed, especially with applica-
tion studies. Finally, the health management technology for humans, artifacts
and nature is assumed to address the essential issues of SoS and illustrate its
important functionality for problem-solving.

9.3.1 Evolution of science, technology, and society

Society, technology, and science have evolved together from ancient eras,
whereas technology has been influenced by scientific innovation and by the
impetus of society. Especially after the Industrial Revolution of the late eigh-
teenth and nineteenth centuries, society, technology, and science have rapidly
evolved, mainly in developed nations. Mass production and consumption
led by competitive societies has led to an ever-increasing accumulation of
problems. Among them are crises of worldwide social security, as well as of
human and environmental health. Unless these problems are resolved in the
near future, the social requirements of safety, security, and health, together
with individual happiness and well-being, will never be realized. The highly
complex nature of target systems such as the environment, humanity, and
society obviously reflects that of SoS.

9.3.2 The world and problems requiring solutions

An essential and simple observation of the world reveals that it can be consid-
ered as comprising humans, artifacts, and nature. Even though the value of
each entity is determined by humans, they are completely different. Examples
of such values are comfort and safety for humans, efficiency and effects for arti-
facts, and environmental enhancement for nature. The problem is that these
values come into conflict with each other. Consider a factory and its environ-
ment as an example for understanding conflict values. Productivity related to
efficiency and effect is the most important value in manufacturing lines. How-
ever, focus only on productivity will increase the emission of carbon dioxide
and other contaminants that will negatively influence the safety and comfort
of human operators in the manufacturing line. Thus, the conflicts among val-
ues of the three entities cause serious problems in important areas such as the
environment, agriculture and food, security and safety, and human health.
Through the discussions above, the harmonization of values among the enti-
ties seems to be in direct relationship to the good health of each entity.

9.3.3 Health management technology based on causality

Figure 9.16 shows a general idea of the health management technology based
on the causality model. Because the target system continuously changes and

246 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

management must therefore adapt, causality must evolve cyclically and
continuously. Four kinds of functions are defined for evolving this model.
Measurement is the quantification of phenomena to arrive at a value from
analyzing signals. Recognition is to identify the condition of the target system
using the measured value. Estimation is to predict the past and future status
of the system based on simulation using causality. Evolution is to improve
causality by the discovery of new events and make changes in the target sys-
tem. Based on causality, measurement, recognition, estimation, and evolution are
cyclically and continuously executed to improve causality for better health.

Interest in human health improvement has increased in addition to pre-
venting psychological and physiological pathologies. To realize both issues,
important continuous and heterogeneous measurements can be obtained
using a pedometer, scales, blood pressure meters, etc. 24 hours each day
including measurements during sleep, while eating meals, and during exer-
cise. The parameters measured by sensors should lead to the discovery of
causalities that can be applied to prevent diseases and improve health. The
causality shown in Figure 9.17 is useful for understanding human health
status. Blood pressure is used as a reference index of health, because it is
closely associated with cardiovascular events such as brain infarction, stroke,
myocardial infarction, and heart failure. Active mass, weight, visceral fat, and
behavior could be measured continuously using a pedometer, a weight scale,
and a sensor bed from the aspects of exercise, meals, and sleep. By analyzing
time series data obtained from measuring equipment, the causality shown
in Figure 9.17 among active mass, weight, visceral fat, and behavior will be

Nature

Artifact

Human

Target System

Recognition Estimation

EvolutionMeasurement

Cause Effect

Input Output

Causality

Figure 9.16 Framework of health management technology.

Chapter nine: Medical and health management system of systems 247

revealed. The causality should reflect individual characteristics, because the
optimum quality and quantity of exercise, meal, and sleep depends on indi-
vidual life styles. Because causality can adapt to changes in individual health
status, the solution could be realized in details and optimized for disease
prevention and health improvement adapted to specific individuals. The
solution could advise the user about the quality and quantity of exercise,
for example, “You need to add 2,000 more steps to your commute to lose 1
kg within one month according to your recent monthly data.” This kind of
message should be very persuasive and motivating for users, because quan-
titative effectiveness is predicted, and the message is well-organized consid-
ering individualization and personalization.

9.3.4 Application study

This chapter introduces an application to the human health management
technology from the SoS perspective. The main function provided by the
application is behavior estimation of a person lying on a bed. This is the first
step toward realizing disease prevention and to improving health based on
whole-day measurements as described above.

Figure 9.18 shows the system architecture. The two kinds of sensors
used to measure human behavior on the bed were developed under con-
sideration of unconsciousness and noninvasiveness. These features are
important for realizing long-term sensing and avoiding influence from con-
scious and unconscious human reactions. One is an ultrasonic oscillosensor

M
ea

l

Ex
er

ci
se

Sl
ee

p

Active Mass

Time

Time

Behavior
in Asleep

Visceral Fat

Time

Blood Pressure

Time

• Brain infarction
• Brain stroke
• Heart infarction
• Heart failure

Time

Cardiovascular
Event

Cardiovascular
Event

Estimation

Via Sensor Bed

Via Weight Scale

Via Pedmeter

Causality

Figure 9.17 Example of causality among meals, exercise, sleep, and blood pressure.

248 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

(UOS), and the other is an air pressure sensor (APS). Each provides different
functionality, because they have different mechanisms. The UOS can mea-
sure low-frequency vibration ≤ 10 Hz using ultrasonic reflection from a liq-
uid surface [12]. It can obtain data about almost all phenomena that occur in
the entire bed because it is installed just below the bed frame (Figure 9.18),
and vibrations can travel through the solid frame. On the other hand, the
APS obtains data about phenomena that occur in a specific location, because
it is installed underneath the back of a supine person. Data generated by the
different types of sensors lead to the classification and prediction of behav-
iors such as rest, turning over, and getting out of bed [13]. Based on the func-
tions of classification and prediction, an individual can be prevented from
falling out of bed. This can be important to the elderly, who can develop
fractures from such accidents and then become bedridden. The function can
also realize an index of quality and quantity of sleep for health assessments.
Besides behavioral estimations, indexes related to physiological status can be
measured such as heart beat and heart rate [14]. Such indices could also be
nodes of causality for realizing disease prevention and health improvement.
Although the system has a simple configuration, the different sensors pro-
vide different types of information that can provide powerful solutions.

9.3.5 Summary and discussion

Systems of systems in general health management technology for humans,
artifacts, and nature are argued considering a vision of the future of soci-
ety. Because the most important part of health management is for humans,
the general idea of human health management was introduced here. Even
though the architecture of the described application is simple, it can lead to
extremely powerful strategies for preventing disease and improving health.

Returning to the original idea of health management technology, the enti-
ties of humans, artifacts, and nature should be taken care of to realize good

Air Pressure Sensor

Ultrasonic Oscillosensor
Control Device

Personal Computer

Figure 9.18 System architecture of sensor bed.

Chapter nine: Medical and health management system of systems 249

health status. To formulate the causalities used in the health management
technology of huge and complex systems such as manufacturing, society,
and the environment, the quantity and quality of data gathered via sensor
networks are incredibly complex and complicated (Figure 9.19). According
to the characteristics of the systems, important heterogeneous information,
as well as more complex, multiple goals are extracted. The many types of
sensors gather data with heterogeneous features such as numerical and time
series, images, and text. The amount of sensed data is vast and complex
because many sensors are continuously used to obtain data over long peri-
ods. As mentioned previously, multiple entities have different goals. Integra-
tion, simplification, and harmonization can be thought as useful functionalities
against the issues: integration against heterogeneous information, simplifi-
cation against increasing complexity, and harmonization against multiple
goals. The functionalities are useful solutions for developing vast and com-
plex systems considering the issues arising from the nature of SoS.

References
 1. Taylor, R. H. 1999. Robotics in orthopedic surgery. In Computer Assisted Orthope-

dic Surgery, ed. L. P. Nolte and R. Ganz, pp. 35–41, Hogrefe and Huber Publish-
ers, Seattle, WA.

 2. Slomczykowski, R., M. Hofstetter, Y. Strauss, M. Sati Bourquin, and L. P. Nolte.
1999. Fluoroscopy-based surgical navigation-concept and possible clinical
applications. In Computer Assisted Orthopedic Surgery, ed. L. P. Nolte and R.
Ganz, pp. 206–217, Hogrefe and Huber Publishers, Seattle, WA.

Sensor for Human Sensors for Artifact Sensors for Nature

Human
Health Management

Artifact
Health Management

Nature
Health Management

Problems More Complex

Multiple Goals

Heterogeneous
Information

Harmonization

SimplificationIntegration

Figure 9.19 System of systems aspects of health management technology.

250 Yutaka Hata, Syoji Kobashi, and Hiroshi Nakajima

 3. Endo, M., K. Nagamune, N. Shibanuma, S. Kobashi, K. Kondo, and Y. Hata.
2007. An ultrasonography system aided by fuzzy logic for identifying implant
position in bone. IEICE Trans. Inf. Syst. E90-D(12):1990–1997.

 4. Ikeda, Y., S. Kobashi, K. Kondo and Y. Hata. 2007. Fuzzy Ultrasonic array sys-
tem for locating screw holes of intramedullary nail. In Proc. 2006 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, pp. 3428–3442.

 5. Mamdani, E. H. and S. Assilian. 1975. An experiment in linguistic synthesis
with a fuzzy logic controller. Int. J. Man-Machine Studies 7(1):1–13.

 6. Hata, Y., S. Kobashi, et al. 2000. Automated segmentation of human brain MR
images aided by fuzzy information granulation and fuzzy inference. IEEE
TSMC-C 30(3):381–395.

 7. Kobashi, S., N. Kamiura, et al. 2001. Volume quantization based neural network
approach to 3D MR angiography image segmentation. Image and Vision Comput-
ing 19(4):185–193.

 8. Kobashi, S., Y. Fujiki, M. Matsui, N. Inoue, K. Kondo, Y. Hata and T. Sawada.
2006. Interactive segmentation of the cerebral lobes with fuzzy inference in 3T
MR images. IEEE TSMC-B 36(1):74–86.

 9. Kobashi, S., K. Kondo, and Y. Hata. 2006. Fully automated segmentation of cere-
bral ventricles from 3-D SPGR MR images using fuzzy representative line. Soft
Computing 10(2):1181–1191.

 10. Kobashi, S., T. Tomosada, et al. 2005. Fuzzy image matching for pose recogni-
tion of occluded knee implants using fluoroscopy images. J. of Advanced Compu-
tational Intelligence and Intelligent Informatics, 9(2):181–195.

 11. Kubo, D., S. Kobashi, et al. 2007. Fuzzy ROI based 2-D/3-D registration for kinetic
analysis after anterior cruciate ligament reconstruction. Proc. of North American
Fuzzy Information Processing, pp. 266–270.

 12. Kamozaki, Y., T. Sawayama, K. Taniguchi, S. Kobashi, K. Kondo, and Y. Hata.
2007. A new ultrasonic oscillosensor and its application in biological infor-
mation measurement system aided by fuzzy theory. IEICE Trans. Inf. Syst.
E90-D(11):1864–1872.

 13. Yamaguchi, H., H. Nakajima, K. Taniguchi, S. Kobashi, K. Kondo, and Y. Hata.
2007. Fuzzy detection system of behavior before getting out of bed by air pressure and
ultrasonic sensors. In Proceedings of IEEE International Conference on Granular Com-
puting 2007, pp.114–119, Fremont, TX.

 14. Hata, Y., Y. Kamozaki, T. Sawayama, K. Taniguchi, and H. Nakajima. 2007. A
heart pulse monitoring system by air pressure and ultrasonic sensor systems.
In Proceedings of IEEE International Conference on System of Systems Engineering,
paper no. 122 in CD-ROM, San Antonio, TX.

251

chapter ten

The microgrid as a
system of systems
Laurence R. Phillips

Contents

10.1 What is a microgrid? ... 252
10.1.1 Motivation: a straightforward microgrid use case254
10.1.2 Microgrid problems and issues ...255

10.2 The microgrid decisionmaking agency and its functions256
10.2.1 Essential decisionmaking agency capabilities 257
10.2.2 Decisionmaking agency roles .. 257

10.2.2.1 User ..258
10.2.2.2 System point of contact ...258
10.2.2.3 Architectural advisor ..258
10.2.2.4 Strategic planner ..258
10.2.2.5 Strategic monitor ..258
10.2.2.6 Tactical monitor and controller258
10.2.2.7 Device protector ...258

10.3 Microgrid organizing principles ... 259
10.3.1 Organization of the microgrid in the context of a primary

power grid .. 259
10.3.2 Organizations made up of microgrids 259
10.3.3 Organizing principles for power systems made up of

microgrids .. 260
10.4 Behavior of the organizational elements ... 261
10.5 Policy for microgrid operation .. 262
10.6 A DMA policy outline ..264
10.7 The subsystems that make up a microgrid ... 265

10.7.1 Electric power subsystems ... 265
10.7.1.1 Production ... 266
10.7.1.2 Storage ... 267
10.7.1.3 Distribution ... 267

10.7.2 Management, operation, and control.. 268
10.7.3 Communication ... 268

252 Laurence R. Phillips

10.7.4 Cyber security .. 269
10.7.5 Decisionmaking and optimization ... 269
10.7.6 Modeling and prediction.. 271
10.7.7 Planning and monitoring ... 271
10.7.8 Computation ... 272

10.8 Microgrid use cases ... 272
10.8.1 Operation under normal conditions ... 273
10.8.2 Operation under anomalous, unexpected, and failure

conditions ... 273
10.8.3 Operation at system capacity ... 273
10.8.4 Operation connected to the primary grid 273

10.8.4.1 Central control when connected to the main grid 273
10.8.4.2 Distributed control when connected to the

main grid ... 274
10.8.5 Operation disconnected from the primary grid 275

10.8.5.1 Central control when disconnected from the
main grid ... 275

10.8.5.2 Distributed control when disconnected from the
main grid ... 276

10.8.6 Transition from the connected to the disconnected state 276
10.9 Conclusions and future work ..277
References ..277

10.1 What is a microgrid?
For the purposes of this chapter, a microgrid is a collection of small, non-
collocated electric power sources, storage devices, and power conditioners
interconnected and operated to meet the power requirements of a designated
community. Figure 10.1 illustrates the essential differences between com-
mon power system arrangements. As this is being written, there are many
small power sources in operation; the Energy Information Administration
reports 28,744 dispersed and distributed* generators with a total capacity of
14,532 MW of installed combined heat and power sources in operation in the
United States in 2005 [1]. The mean size of these generators is slightly more
than 500 kW. A generator that size can hardly be considered “small” in an
absolute sense; a 500-kW diesel generator occupies 200 cubic feet and weighs
12 tons and, if run around the clock, could produce enough electricity to sup-
ply 600 families.† Conversely, the average generator in the United States is 60
MW, 120 times the size of 500-kW generators, which makes them relatively
very small.

* Dispersed generators are not connected to the grid; distributed generators are.
† Although this is probably not the appropriate power plant to meet that particular

need.

Chapter ten: The microgrid as a system of systems 253

Power sources operated at physically separated sites are almost always
operated independently of one another to meet local power needs as deter-
mined by local decisionmaking processes based on local information, and
otherwise shut down. Most dispersed and distributed generators are oper-
ated either as ancillary power sources, for peak-shaving and emergency
power, or as “mini power plants,” several colocated identical sources con-
nected to one bus and operated by a single cadre of engineers. Neither of
these situations can be considered a microgrid: multiple independently oper-
ated, cooperating small sources that are not collocated.

It is the need for engineers that argues against powering the nation with
microgrids. Replacing one percent of the nation’s operational generators

Source 1

Source 2

Source 3

Load a

Load b

Load c

(a)

Source 1

Source 2

Source 3

Load a

Load b

Load c

(b)

Source 1

Source 2

Source 3

Load a

Load b

Load c

(c)

Figure 10.1 The essential difference between microgrids and other configurations
is the cooperative operation of the sources despite their physical separation. (a) In
an independent or backup setting, power is delivered to each load from a local source
along a dedicated path. Loads are normally unsatisfied when sources fail. (b) In a
powerplant setting, power is delivered to distributed loads from a set of collocated
sources via a power distribution system. Power is normally transmitted over long
distances. (c) In a microgrid, primary power is delivered to distributed loads from
local sources as in (a), but an ancillary distribution and energy management system
delivers power efficiently in low load situations and supplies important loads when
their local source fails.

254 Laurence R. Phillips

with microsources would require 48,000 new installed 200-kW generators,
which would quadrupling the total number of generating units. This implies
that widespread deployment can occur only if some managing/operating
mechanism can perform day-to-day operations and respond to at least sim-
ple contingencies.

10.1.1 Motivation: a straightforward microgrid use case

Here we examine an operation that we expect the microgrid to perform on
a regular basis. To keep the analysis straightforward, we assume no failures
anywhere. Our intent is to motivate a discussion of the systems that make
up a microgrid with an eye toward determining what systems are necessary
and what they should do. We look at the case where several generators are
producing power at an optimum level, the rest are idle, and load is slowly
increasing. How is the decision to commit (start up) a generator made?

To make a commitment decision, the agency* in charge of managing the
microgrid must have three capabilities: (1) the ability to commit at least one
source that is not currently producing—in both the sense of being able to
physically start it and the sense of being authorized to do so; (2) a means of
determining which of its available generators to commit, and (3) the ability
to recognize that the situation implies this would be the right thing to do. All
three need to be accomplished in real time, i.e., while they still matter, and
each requires additional information.

The first capability requires that the decisionmaker have access to an infor-
mation structure that contains some “permanent” knowledge (e.g., which
generators the decision-maker commands) and information that is contin-
uously updated (e.g., which ones are presently producing power and how
much). The content of this information structure allows the decisionmaker
to determine whether any of the sources that “belong” to it are capable of
being committed.

The main source of additional power in this situation will be idle genera-
tors that can be started (although see Section 10.7.1.2, “Storage,” for discus-
sion of another way to provide power). The decision comes down to choosing
the most economical power source based on cost of operation, distance from
sources, and start-up cost, under any given situation. In [1], we used rela-
tively simple linear programming to decide among production alternatives.
A more relevant approach, because we’re likely to be working with a dis-
tributed computing plant, would be to use a distributed technique such as
particle swarm optimization [3] or a hybrid genetic-Lagrangian search algo-
rithm [4] to determine which unit to commit.

* More than one agency could be involved, but if so, they must act as if they were one
agency to achieve the desired result. The ability of multiple agencies to cooperate with
the intent of achieving a goal implies a set of ancillary skills discussed further in [1].

Chapter ten: The microgrid as a system of systems 255

The question of when to commit a generator is somewhat complex. Several
subsidiary pieces of information are needed. These are all collected from the
power network or derived from data collected from the power network. The
primary information needed to answer this question is the rate at which load
is increasing. Given this, it is simple division to compute how long it will
be before the capacity of the current set of operating generators is reached:
remaining capacity in kW divided by load increase rate in kW/second. Arriv-
ing at a useful estimate of rate increase is not straightforward, because load
is unlikely to increase uniformly; we need to describe the load time series
to estimate the rate of load increase. Given some estimation of the way the
waveform varies, we can estimate the time error in our “generator start time”
result and start the required generator early by that amount.

In a small system, discontinuous jumps in load will cause instability in
the power system, possibly to the extent of causing sources to self-protec-
tively trip. Furthermore, the sudden appearance of a large load may outstrip
the capacity of the active generators too quickly for the system to respond,
again causing frequency droop and possible generator trip. In this case, we
can take any of several courses of action, although some require recognition
of this possibility in the design phase:

 1. Design loads to limit sudden load increases.
 2. Electrically isolate sudden large loads to preserve operational integrity.
 3. Include appropriately dispatchable storage to compensate for expected

load increases.
 4. Use knowledge of the microgrid’s loads and load history to recognize

that spinning reserve should be available at certain times.
 5. Keep a generator running as spinning reserve, i.e., under no load, at all

times.

These are approximately in order of overall operational economic appeal,
although capital costs will affect the design as well. The first three options
are considered good microgrid design practice for other reasons (see Section
10.7.1.2, “Storage,” in particular).

10.1.2 Microgrid problems and issues

It is easy to adopt a straightforward stance toward managing a microgrid—
“do the correct things in the proper order”—but this is difficult if the system is
at all complicated (as even small power systems tend to be), if “normal” opera-
tions are compromised by unusual events (a relatively common occurrence),
or if operators do not have good situation awareness or information about the
likely future system state. Operators will be further hampered by the general
inability of any group of people—even if they are all in one room*—to agree

* It is tempting to say especially if they are all in one room.

256 Laurence R. Phillips

on a goal state they will cooperate to achieve (given that an unexpected event
has occurred, what should be the state of the power system?) or to construct a
series of steps likely to achieve it. In the general case of trying to solve a power
system problem, there will be a time constraint—not only do decisions need
to be correct, they need to be made quickly. This becomes nearly impos-
sible for human operators communicating by telephone. As a case in point,
it is generally agreed that poor situation awareness and slow, uncoordinated
response to known faults were instrumental in the August 2003 Northeast
Blackout [5].

From first principles, distributed resources are difficult to operate because
it is difficult to determine global requirements, to get coherent global status
information, to determine what local actions need to be taken with the intent
of satisfying global requirements, and to coordinate local actions to meet
global requirements. These are required if we are to claim we are running
things as a system. This is because operational decisions for the controlla-
ble elements of a distributed system must refer to the other components; by
definition, a system consists of “interrelated interacting artifacts designed
to work as a coherent entity [WordNet].” So, what does it mean to operate
noncollocated generators as elements of a system?

In the case of the primary power grid, decisions are based primarily on
a complex decisionmaking process that incorporates predicted and actual
power needs, market conditions, the state and condition of the power sys-
tem, the state of the economy, the availability of fuel, the weather, and other
influences that are difficult to enumerate, but which everyone agrees affect
the system, such as whether the lead facility operator for the power plant is at
work when the coolant pump for generator #3 begins vibrating even though
it was inspected only last week.

The power principles inherent in operating a microgrid are not particu-
larly different from the principle of operating a large grid. For instance, in [6]
we find the following advice: “Connect moderate loads in each step. As the fre-
quency derivative is proportional to the load step a connection of a moderate
load will result in an acceptable frequency deviation.” This is good advice
for any power system, differing for a microgrid only in the meaning of the
word moderate: the microgrid power waveform is much more delicate than
the highly resilient waveform of the primary grid because the capacitance of
the microgrid is comparatively small.

10.2 The microgrid decisionmaking
agency and its functions

Many decisions needed to operate a microgrid are relatively simple and
could be made by an automated decisionmaking system, but in any case
must be made by some agency. Some decisions, for example abandoning
large loads to prevent an impending blackout, are more complex, and given

Chapter ten: The microgrid as a system of systems 257

today’s technology, it is difficult to imagine such decisions being made with
no humans in the loop. These human decision makers constitute agencies
as well. In the remainder of this chapter we refer often to the decisionmaking
agency, abbreviated DMA. In some cases this may be an automated com-
putational process and in others will require a human, but at this point
we are more interested in the decisions themselves and rather less in the
exact nature of the entity making them. Figuring out which decisions will
be made by what sort of agency depends to a large extent on what technol-
ogy is available and must wait for implementation.

10.2.1 Essential decisionmaking agency capabilities

A microgrid is made up of a power system (PS) and a management, operation,
and control system (MOCS). The PS and MOCS together are “the system.”

Microgrid operation, as in any power system, centers on power produc-
tion and distribution.* Overall, it is easy to say what we want: The system
should supply the loads for which it is responsible. In practice, however,
the best we can hope for is that the system will act to supply its loads. This
will often be sufficient because the PS will usually respond as the MOCS
expects. In this section we focus on the duties of the DMAs that make up
the MOCS.

Firestone and Marnay state in [7] that “Microgrids require control . . . to
make dispatch decisions that achieve system objectives such as cost minimi-
zation, reliability, efficiency and emissions requirements, while abiding by
system constraints and regulatory rules.” Lasseter et al. advise in [8] using
an energy manager to determine source power and voltage set points based on
a desire to “insure that the necessary heat and electrical loads are met by the
microsources; insure that the MicroGrid satisfies operational contracts with
the bulk power provider; minimize emissions and/or system losses; [and]
maximize the operational efficiency of the microsources.” See the “Manage-
ment, operation, and control” section (Section 10.7.2) for a discussion of the
system that would accomplish these functions.

10.2.2 Decisionmaking agency roles

One or more DMAs must accomplish the roles listed in this section for every
power system. The more complicated of these have traditionally been accom-
plished by humans, who over time have come to rely on complex computa-
tional processes to make the necessary decisions. Without being specific, it is
safe to say that in the future additional functions will be automated.

* Because microgrids are relatively compact, we do not differentiate between power
transmission and power distribution.

258 Laurence R. Phillips

10.2.2.1 User
Users add and remove devices, propose configuration changes and scenarios,
and view information about actual or predicted system state based on real
or hypothetical states. Users can also enable and disable individual sources,
based on the premise that a user can have information for which the system
has no sensors, for example, knowledge that an active generator is in a burn-
ing building.

10.2.2.2 System point of contact
A DMA must act as the system point of contact (POC) to inform a user about
the current system state through a user interface, to receive requests from the
users to perform certain actions (setting maintenance schedules, enabling
and disabling devices, etc.), and to act as a conduit to pass user commands
into the system.

10.2.2.3 Architectural advisor
A DMA in the architectural advisor role deliberates among alternative plan-
ning policies and potential sites to add sources, loads, lines, and sensors to
the system. In this capacity the architectural advisor is in a position to assist
users in decision making and in establishing official system policies that
constrain planned activities.

10.2.2.4 Strategic planner
A DMA in the strategic planner role proposes configurations to the other
DMAs in the MOCS, regarding where power and heat is generated, transmit-
ted, and used, and proposes contingency plans.

10.2.2.5 Strategic monitor
A DMA in the strategic monitor role tracks system-wide status and identi-
fies when the power system is and is not operating according to the agreed-
upon configuration.

10.2.2.6 Tactical monitor and controller
A DMA in the tactical monitor and controller role is responsible for making
tactical control decisions in support of the strategic plan and is responsible
for giving advance notice of actions to the strategic monitors.

10.2.2.7 Device protector
A DMA in the device protector role monitors the state of a device and acts to
prevent damage to the device, including configuring the device to act prop-
erly under contingencies. This includes taking it online and offline, negotiat-
ing down times, etc.

Chapter ten: The microgrid as a system of systems 259

10.3 Microgrid organizing principles
Discussions about microgrids generally center on two points: How does an
individual microgrid function, and how does a microgrid behave when con-
nected to a much larger power system? A third issue is often ignored: How
should microgrids relate to one another? This section addresses the behavior
of microgrids connected to other microgrids. We discuss decision making,
organization, and operating concerns.

As long as microgrids are operated as ancillary power systems, address-
ing the question of how they should behave in the context of the primary grid
is essential if microgrids are to be a viable way to provide power. Conversely,
if microgrids succeed, it is possible that at some point there will be no pri-
mary grid, but only other microgrids. Although it is difficult to imagine from
today’s vantage point, we will certainly find ourselves, as more microgrids
reach operational status, somewhere between having only isolated micro-
grids and having nothing but microgrids. The relationship among micro-
grids will need to be addressed.

10.3.1 Organization of the microgrid in the
context of a primary power grid

Organizational concerns of the microgrid in the context of the primary grid
center on two states addressed elsewhere in this chapter in Section 10.8.5,
“Operation disconnected from the primary grid,” and Section 10.8.4, “Opera-
tion connected to the primary grid.” To sum up, the organizational concerns
in the context of a primary grid are subsumed entirely in how the microgrid
is arranged internally in each of these conditions. The microgrid, as is so
clearly put in [8], “can be thought of as a controlled cell of the power system
within which heat and power are generated for local customers, and genera-
tion and load are controlled.”

10.3.2 Organizations made up of microgrids

As implied in the previous section, how microgrids communicate with one
another is not particularly relevant in the earlier stages of the evolutionary
process that ends in a power system consisting entirely of microgrids. Early
on, inter-microgrid communication could be handled as necessary on a situ-
ational basis. Farther along, however, general principles would be needed to
design new microgrids that will need to communicate with existing micro-
grids at the moment they are activated.

The remainder of this section discusses concerns raised when microgrids
need to interact with other microgrids.

260 Laurence R. Phillips

10.3.3 Organizing principles for power systems
made up of microgrids

Cells, globs, and cooperatives are the organizing and scaling concepts for
DMAs operating a distributed power system. A cell is a set of sources, loads,
switches, branches, and buses managed by a single independent DMA. The
idea behind a cell is to attach an ontological element—the cell—to the small-
est unit of DMA responsibility. This places a lower limit on the functionality
required of a DMA. Cell extent is limited so that operating a cell under ordi-
nary conditions can be presumed to be straightforward, consisting essen-
tially of maintaining adequate power for the loads that “belong” to the cell.

A cell should be conceptually simple and arranged so a single “tactical”
decisionmaker could manage it easily; e.g., its sources should be physically
collocated and all on one bus and its loads switched en masse as either “criti-
cal” or “noncritical.” For instance, a cell might consist of a building, the three
generators in its basement, the photovoltaic array and storage batteries on
its roof, and an additional building sharing power but with no generating
capacity.

When two or more cells are electrically connected to one another, the pos-
sibility of trading power arises. Cell interaction policy is the locus for the
economic rules that govern power transactions among cells and determines
the nature of the organizations the cells can form. A group of electrically
connected cells can be organized in two ways: a glob or a co-op. If genera-
tors are physically separated from one another to the extent that they can-
not readily be operated by a single human technician, and they are not on
the same bus, meaning their power is distributed via a network of switches,
breakers, buses, and lines and can be routed or islanded, those generators
are better characterized as a group of separate cells, either a glob or a co-op,
depending on the role of policy in their operation. Globs and co-ops look
alike, but the DMAs that manage the components base their behavior on dif-
ferent kinds of policies.

A glob is a network of cells in which the member cells have agreed to
trade power. A glob differs from an unconstrained collection of connected
cells in that the cells in a glob need to be able to execute policy elements that
relate to power trading (kilowatt-hour volumes, tariffs, payments, prices,
contracts, etc.). DMAs without these elements could not technically form a
glob, because they cannot trade power; they lack the knowledge to conduct
power business. The nominal behavior of a glob-capable cell is to produce
or acquire adequate power for cell loads. Basic standalone cell policy would
be supplanted by liveness and safety conditions specifying how and when
to trade (“buy power if it is cheaper than it costs you to produce it yourself,”
“buy power if you cannot make enough,” etc.). Glob membership is attractive
to a glob-capable cell DMA because it can import available power from other
cells if in-cell loads cannot be satisfied (or cannot be economically satisfied)
by in-cell sources. A cell DMA that is part of a glob would “prefer”—we are

Chapter ten: The microgrid as a system of systems 261

using quotes because the preference could be dictated by policy—to pur-
chase power rather than not satisfying its loads and to spend less on pur-
chased power than on power it makes with its own sources.

A co-op is a glob in which the cells obey a common policy governing trans-
actions among the constituents. In particular, policy may dictate that a cell
give preferential treatment to loads not its own. Co-op cells would need all
the capabilities of glob-capable cells. The primary distinction between a glob
and a co-op is that co-op policy is designed to affect power over the entire
group of cells—to maximize the probability that critical co-op loads will be
satisfied, for example—while there is no such overarching design in a glob.
A cell in a glob satisfies its own loads before considering other cells, whereas
a cell in a co-op may, based on policy, satisfy loads in other cells before it sat-
isfies its own. A glob becomes a co-op when its cells begin to obey a policy
that overrides individual cell policies; e.g., “a cell in a co-op shall shed its
own noncritical loads when necessary to serve another cell’s critical loads.”

10.4 Behavior of the organizational elements
The default behavior of a DMA managing a cell is greedy: it acts to supply
in-cell loads. If the sources in a cell can generate more power than required
by in-cell loads, a cell DMA may export power if it is part of a glob. For the
moment, we assume price conditions are always met; i.e., there might not
be enough power from in-cell sources to satisfy in-cell load, but this would
not be because of economic reasons. This raises the prospect of a cell/co-op-
based power economy that admits auctions, etc., which we leave for future
consideration. Note this has no bearing over supply decisions within a cell,
because power is always applied preferentially to in-cell loads in the canoni-
cal cell. This would not prevent the appropriate tariffs from being collected
nor free the DMA from having to know about them.

The default behavior of cells in a glob is unspecified and depends primarily
on the commitments, if any, of its constituent cells. Interconnections between
cells from two different globs just makes a bigger glob; there is no notion of
two globs of cells interacting as globs,* because globs do not have an identity,
nor is there any overarching mechanism to differentiate a cell as belonging
to a particular glob. Emergent or unstable conditions might result from cells
responding to loads in other cells as specified by their individual contracts.

The glob organizing principle exists primarily to describe “life beyond the
cell” so that co-ops can be discussed. Co-ops make sense when some loads
are more important than others; greedy cells want to satisfy their loads, and
if all loads are alike, it does not matter which ones get satisfied first. But in
a glob, even if some loads are more important, unimportant loads might be
satisfied while important loads nearby remain unsatisfied (because, say, gen-
erators have failed in that cell) because of default greedy cell behavior.

* This does not limit interaction among individual cells from different globs in any way.

262 Laurence R. Phillips

The default behavior of cells in a co-op is defined by the policy of the
co-op and can be made to appear altruistic; for example, policy might dictate
that a hospital without power be supplied by its neighboring cells, even if
they must shed advertising and entertainment loads to do so. Exactly what
loads are shed under what conditions is determined by co-op policy and
enforced by the DMAs.

We suggest that a co-op should be, without loss of generality, either an
actual multicomponent co-op or a primitive cell following co-op policy. This
is conceptually appealing because, if a cell and a co-op can act alike, a group
of co-ops can form a larger co-op, so that cooperation among co-ops would
be much like—the appropriate abstraction barrier would allow us to say
exactly like—cooperation among cells.

This resolves, at least conceptually, the scaling question: It is all well and
good to conduct a laboratory proof-of-principle experiment involving a
few dozen DMAs, but how should several thousand DMAs be organized
to manage a large distributed power grid? We respond that they should be
organized as co-ops whose members are themselves co-ops.

This requirement implies new features. A DMA representing a cell would
provide an abstracted public picture of the cell. It would not be necessary to
distinguish* a cell trying to join a co-op from a genuine co-op acting as if it
were a cell trying to join a co-op. Fundamentally, cell capabilities and co-op
capabilities need to be separated from one another and made available as
separate packages. This means that a co-op could then take on the cell-level
capabilities needed to be a member of a co-op, which would enable it to par-
ticipate in co-op operations as a member element, i.e., as if it were a cell.

It also means that co-ops and cells could be members of the same co-op.
Connections out of a co-op would be managed as if they were connections
out of a cell, and co-ops could negotiate with one another and with cells in a
larger glob or a larger co-op. Co-op policy would constrain the interaction.

Although a cell DMA would have detailed information about cell con-
tents and a co-op would generally be a much larger entity than a cell, this
would all be hidden by the abstract interface. A large power system consist-
ing of many thousands of microgrids would be organizationally fractal, in
the sense that each of the pieces of the organization would be very similar to
the organization itself; co-ops would be made up of smaller co-ops, etc., with
the most primitive elements being single cells following co-op rules.

10.5 Policy for microgrid operation
Control and management are two distinct sets of functionality, and both are
necessary to operate distributed infrastructures. Many control tasks can be

* To be fair, an entity with whom one was interacting would likely identify itself as a
cell or co-op, but to an implementor, the protocols, messages, and content information
would be the same.

Chapter ten: The microgrid as a system of systems 263

performed by wholly automated mechanisms based on local conditions, but
management requires knowledgeable oversight by autonomous, situation-
ally aware entities that can communicate with one another and act quickly
and with assurance.

There are three operation time scales of interest in the electric power
domain:

 1. Near-instantaneous (a second or less)—This is the time frame in which
the system has to handle minor or routine load fluctuations, presum-
ably by having generators preconfigured to respond in a certain way
to local load changes. In emergency scenarios this is the approximate
time frame in which breakers would need to be thrown; for example,
to cut off a noncritical load in order to mitigate the problem of a local
generator failure. The DMAs are not expected to respond in this time
frame, due to the need to communicate with one another, but can
observe its effects. We assume nearly all actions taken in this regime
will be accomplished completely automatically.

 2. Short-term (seconds, up to a minute)—This is the time frame in which
conditions that require no more than reporting and invocation of exist-
ing group plans can be addressed. In practice, an event is observed and
reported to tactical peers, and the DMAs to whom the event has been
reported take predetermined steps. This is the notional process for
responding quickly when a generator fails: a contingency plan for the
scenario will have been distributed a priori, and the failure event alone
will trigger the designated response. System designers must accommo-
date short-time-scale events by building in automatic protection.

 3. Long-term (minutes to years)—This is the time frame in which plan
generation and distribution can occur, enabling changes to the power
system to be handled according to policy, assuming the system has
been stabilized in the near-instantaneous or short-term time frames.
Short-term responses should already be in place for specific contingen-
cies, and these might buy time for the planning process. Replanning,
agreeing upon the final plan, distributing this, and putting the plan
into action is expected to take several seconds, if not minutes.

We would like the system DMAs, regardless of their locations, to rapidly
and automatically (i.e., without the benefit of explicit real-time instructions)
make decisions based on policy, in other words, to manage the power system.
The decisions to be made are, essentially, which resources to use to satisfy
load requirements under a given set of conditions, what actions to take under
various conditions of rapid change, and with whom and in what manner to
interact in order to make these decisions with the appropriate authority.

DMA-enforced policy orientation gives human policymakers the capac-
ity to define an explicit policy that the DMAs will endeavor to enforce in the
face of contingencies, threats, and unpredicted behavior by human operators.

264 Laurence R. Phillips

A DMA of this sort acts either in direct response to an authorized entity or
because the data on which it is basing its decisions is consistent with premises
that taking the indicated action is consistent with policy and will increase the
likelihood that the future state will be a desirable one.

10.6 A DMA policy outline
 1. Human interaction
 a. When an entity with the appropriate authority issues a command

that the MOCS is able to obey, the MOCS should obey the command
and report that it has done so.

 b. When an entity with the appropriate authority issues a command
that the MOCS cannot obey, the MOCS should report that it cannot
obey the command and say why.

 2. Source control
 a. When total load is in excess of the maximum that the MOCS can

supply in its current configuration, transition to a new configura-
tion, if any, that can supply adequate power.

 b. Check first for stored configurations designated as capable for
equivalent loads.

 c. If there are no appropriate stored configurations, search for some.
 d. When choosing a configuration to supply power, prefer configura-

tions that:
 i. Generate equivalent power at lower cost
 ii. Differ less from the preceding configuration
 iii. Have a lower system-wide average fraction of rated power being

carried by all lines
 iv. Can supply a thermal load that occurs within the appropriate

time interval
 e. If it appears that total load will at some future time exceed the maxi-

mum that the system can supply in its current configuration, search
for other configurations in which the projected load can be satis-
fied. Record each such configuration in conjunction with associated
load information and other information needed to select among
configurations. Denote the configuration as capable of satisfying its
associated load.

 3. Load control
 a. Maintain service to all loads.
 b. When load must be shed, shed noncritical loads before critical loads.
 c. Prefer supplying critical loads to shutting down sources for

maintenance.
 d. Prefer shutting down sources for maintenance to supplying non-

critical loads.

Chapter ten: The microgrid as a system of systems 265

 e. If it appears that projected load will soon be greater than the system
can supply, determine the order in which to shed loads and which
loads should be shed.

 4. Maintenance scheduling
 a. Take components offline as required by their maintenance schedules.
 b. As a component nears 90% of its MTBF, assign it high priority for

being taken offline.
 c. Take any component that exceeds 90% of its MTBF offline for main-

tenance (may be overridden by 3c).
 5. Distribution path
 a. When a distribution path fails, compute the power flow for the

remaining network and determine whether any of the remaining
lines will be forced to carry more power than their rated capacities.

 b. If a line is carrying more than its rated capacity, and there exists
some other line not in service whose placement into service will
allow a new load distribution where no lines are overloaded, place
that line into service. If more than one such line exists, choose the
line for which the system-wide average fraction of rated power
being carried by all lines is lowest when the system is placed in the
suggested configuration.

 c. When the steady-state power flow through any generation, trans-
mission, or distribution element exceeds its maximum steady-state
rating, transition to a new configuration that will bring all system
power flows into specification. Such reconfiguration may include
a prioritized shedding of heat loads or those that can be served by
other heat sources.

10.7 The subsystems that make up a microgrid
A microgrid is made up of a power system (PS) and a management, opera-
tion, and control system (MOCS). The PS and MOCS together are “the sys-
tem.” The power system is made up of systems for production, storage, and
distribution. The MOCS incorporates systems for communication, cyber
security, decisionmaking and optimization, modeling and prediction, plan-
ning and monitoring, and computation.

10.7.1 Electric power subsystems

In order for a series of noncollocated power sources to be operated as a micro-
grid, they must be in the same circuit, since sources in different circuits can
have no effect on one another, and there would be no point in considering
them concurrently. Any load served by any source in the microgrid is thus
also in the circuit with all the sources while it is being served, as are all the
other electrical sensing, control, and management devices. In general, it will

266 Laurence R. Phillips

be possible to separate any of these elements from the rest by switches or
breakable connections.

10.7.1.1 Production
Microgrid sources are generally assumed to be small relative to primary
power generators, in the range of 200 kW or less. A paper mill or semicon-
ductor plant consuming several tens of megawatts would need hundreds
of 200-kW generators. The interconnection hardware, control systems, and
human staff needed to manage such a large number of sources would straight-
forwardly render the power enterprise uneconomical compared to relatively
simple connection to the main power grid, especially since the main grid
already exists. This is one reason there are not more microgrids: they are
obviated by easily available power from the primary grid. Conversely, if we
were designing a power system from scratch we probably would not build
the power system we have today, which was built during a time of high regu-
lation and cheap fuel.

To be fair, a microgrid for, say, a 75-MW paper plant would probably not
be constructed using 200-kW generators. One of the primary economic ben-
efits of a microgrid is that the sources can be operated at optimum levels. A
75-MW paper plant would be operated around the clock with a minimum
power load of a few tens of megawatts. There would be no real point in satis-
fying that load with a hundred 200-kW generators. The appropriate number
of generators for a paper mill is around half a dozen, plus or minus a few. A
2004 study of actual and potential microgrid sites [9] reports almost a hun-
dred paper mills operating generators in the United States. Of these, 76 are
operating three to six generators, with only 16 operating seven or more. This
allows the individual power sources to be operated optimally (for the most
part; see Section 10.7.5, “Decisionmaking and optimization”) and shut down
for maintenance while providing flexibility for variation in power require-
ments. Nominally we would rotate duty so that each generator would have
a duty cycle less than 100% to allow for maintenance. We also need to know
something about the statistics of the 75-megawatt load. Among other things,
is 75 MW the peak load or the average load? We do not want to curtail opera-
tions too often because the power system does not have sufficient capacity,
but we must be cognizant of the fact that satisfying 100% of the load 100% of
the time may be very expensive.

Power production needs to be dispatchable, so that we can start production
when we need power and stop when we do not. The energy inputs to solar
and wind generation are free, which makes them economically attractive
even though the capital cost per watt is high. Unfortunately, however, they
are not dispatchable; whether they are making power at any given moment
has little relationship to load. It is advised that, if renewable energy sources
are being considered, site load profiles be compared to the site’s renewable
energy profile to determine whether renewable sources are feasible. It is also
worthwhile to consider that, since wind and solar power, in particular, may

Chapter ten: The microgrid as a system of systems 267

not be available at any given moment, they cannot be relied upon to pro-
vide power at any given moment, and their capacity must be, in essence,
duplicated by dispatchable sources, especially for high-priority loads. This
means that they can supplant energy sources but cannot displace capital
plant expenditures.

10.7.1.2 Storage
Storage is used to compensate for the inability of system sources to provide
adequate power for some period of time. In a system that incorporates non-
dispatchable sources such as solar photovoltaics or windmills, either dis-
patchable sources or storage can be used to compensate for variation in the
essentially uncontrollable production. In a small system, however, the inabil-
ity of system sources to respond in a timely manner virtually dictates some
storage to compensate for source response lag.

In general, the smaller the overall system, the greater the requirement for
storage. This is discussed at some length in [8]. Essentially, the inertia of a
smaller power system is less, all other things being comparable. The transient
effects of switching a source or load of a given size in or out will be propor-
tionally larger for a small power system and consequently are more likely
to cause self-protective shutdown of other system devices. In a large power
system, the capacitance of the system as a whole can absorb and compensate
for variation caused by the behavior of individual elements. This is also true
for a smaller system, but for phenomena of a much smaller magnitude.

Additionally, components of the system need time to respond to varia-
tion. A rotating-mass source can require several minutes at startup before
it can provide power. Since such a startup would be in response to a power
requirement, total system production may very well be less than total system
load during this startup period. In a small power system, this power deficit
can cause frequency and voltage droop to the extent that, again, individual
devices will self-protectively shut themselves down. This will in turn cause
further instability and power deficit and can lead to cascading shutdown
that will cause the entire power system to black out. It is important to note
that the behavior of individual devices is the same whether part of a small
or a large power system, but any effects are proportionally greater in the
smaller system and therefore more likely to be problematic.

The primary storage decisions that the MOCS needs to make are when to
store power in the storage subsystem and when to take stored power out of
the storage system.

10.7.1.3 Distribution
One of the benefits of serving loads with a microgrid is that power need not
be transmitted over the long distances assumed for regional power grids,
and transmission losses are therefore lower. In general, the distances over
which power needs to be moved in a microgrid are consistent with distances
at the distribution level of a regional power grid.

268 Laurence R. Phillips

It would be helpful in terms of overall reliability and ease of operation if
we could arrange our microgrid distribution system so that any generator
could supply any load. We could then literally start up any generator when
we needed power. This will not always be the case because of congestion,
i.e., the distribution system may not be of sufficient capacity to allow any
producible amount of power to flow anywhere in the microgrid. In a distrib-
uted power system the DMAs should cooperatively compute the optimum
power flow using a distributed technique like ant colony optimization, as in
[11], or particle swarm optimization, as in [12].

10.7.2 Management, operation, and control

The overarching task of managing a microgrid is to operate the generators
so that the loads that “belong” to the microgrid are satisfied (loads are not
normally associated with sources, but they are in this formulation so that a
responsible entity can be named). This can be complicated for even a simple
power system, as discussed in [1], especially one without a high-inertia refer-
ence power source with which the sources can synchronize. It is particularly
important to balance production and load at any given moment in a small
power system (discussed further below in Section 10.8.5, “Operation discon-
nected from the primary grid”), because relatively small differences between
production and load can cause the sources to self-protectively halt.

The complex of elements that accomplishes the management, operation,
and control functions for a microgrid should be thought of as a system,
because its mission is to operate the microgrid in a unified way. The MOCS
is made up of DMAs and the communication network, computers, sensors,
relays, etc. needed to supply data to, execute the required functionality of,
and carry out the commands of the DMAs.

10.7.3 Communication

Microgrid communication occurs in two senses: electrical communication
and information communication. In the electrical domain, power system
events have system-wide effects that are communicated throughout the
electrical system, with the system itself as the medium. In the information
domain, all information that is needed to operate the power system with the
intent of achieving or maintaining a desirable nonlocal state, and which is
not already present in the power system, must be communicated explicitly.

The failure of a generator in Seattle can be detected in San Diego as a
slight reduction in the frequency of the alternating current. The frequency
drops because the burden of serving the system’s loads falls to the genera-
tors remaining in service, most of which are of the rotating mass type. This
increases the load at each generator, which is then slowed slightly, which
reduces the frequency. The governing control system of each generator

Chapter ten: The microgrid as a system of systems 269

responds independently by accelerating the generator to bring the system
frequency back up to the nominal level.

Control of the system frequency, voltage, and phase thus relies in large part
on the system frequency, voltage, and phase. In essence, the system provides its
own reference. Since the system is never completely shut down, the reference
is always available. This is one reason it takes weeks to return a large blacked-
out power system to service: The reference is gone and must be carefully pre-
served as sources and loads are returned to function. Similarly, the microgrid
has no readily available reference, but must somehow provide one.

This brings us to information communication: The reference standard
will not necessarily be available via the power system, but may need to be
provided through a networked digital communication system, along with all
the other information needed by the system that cannot be gained by observ-
ing the power waveform. In particular the power system itself cannot gener-
ate information about which nonoperating generator should be committed
to service to provide power for an upcoming power need.

The communication system is needed to carry two kinds of information:
commands and power system condition information, whether directly from sen-
sors or operational devices (a relay, for example, might send a digital signal
that it had complied with a command) or from other DMAs (who could use
their information storage and computational resources, for example, to com-
pute the mean power output of a source during a period of time).

It is becoming increasingly common to transmit digital control system
information via the Internet, for essentially the same reason that an elec-
tric power user connects to the primary power grid: the service is available,
cheap, and meets the demand; all that is needed is connection. Bandwidth
may become a problem, but the Internet as it stands today is not bandwidth-
limited for the relatively low data rates needed for intrasystem communica-
tion. On the other hand, cyber security is an issue.

10.7.4 Cyber security

The cyber security of the communication system used by the MOCS is of
increasing concern. It is worth pointing out that the primary security con-
cern in this regime is that many operators do not have a security policy and
do not follow best practices. The most effective advice for producing an
effective security plan is to have one. Significant and plentiful information is
available on securing infrastructure control systems. We recommend [13–15]
for advice on effective control system security practice.

10.7.5 Decisionmaking and optimization

The decisionmaking facility is the primary way a microgrid is distinguished
from a set of independently operating sources. This implies the DMA needs a con-
tinuous supply of relevant, timely information on which to base its decisions.

270 Laurence R. Phillips

For example, consider the policy statement: “When load is expected to
exceed the amount of power that can be produced by the operating sources
at their current setpoints, and the setpoints of at least some sources are not at
their maxima, raise the setpoints of the appropriate sources to the appropri-
ate levels in an economically optimum manner.” This implies that the MOCS
needs to maintain data structures containing up-to-date information about:

 1. Which sources are operating and which are not, their electronic
addresses, their current setpoints, their current production levels, their
maximum production levels, and their production increase rates

 2. Current demand, its rate of increase, and its expected value at future
points

 3. The algorithms to use to determine which sources will have their set-
points increased and the new levels

 4. The commands to be executed to enable these setpoint increases
 5. The connectivity and interfaces needed to execute these commands

within the PS

Each policy statement to be upheld by the system requires similar analy-
sis. The MOCS will require a data structure containing the results of this
policy analysis.

The commands that can be given to the devices that make up the power
system are simple, consisting primarily of “on” and “off.” A switch or relay
is “off” when open and “on” when closed, and a transmission line can be
treated similarly, although in most cases the line will simply be “on”—able
to transmit power up to its capacity and regarded as “off” only under fail-
ure conditions. It is reasonable to allow a complex subsystem consisting of
a transmission line, power conditioning equipment, protective relays and
command-operated switches to be regarded as a single element that is usu-
ally “on” but can be “off” under certain failure or control conditions.

A generator is somewhat more complicated, but only a little; in an effi-
ciently operating microgrid, most of the generators producing power at any
given moment will be operating at their most efficient settings and can be
regarded as “on.”

In all but the most idealized conditions, since power production and con-
sumption must never be allowed to differ by more than a small amount,* the
output of a few—ideally only one—must be allowed to fluctuate in response
to changes in load. We want to minimize the number of generators operated
in this fashion because they are, by definition, operating inefficiently.

The selection of which generator(s) are allowed to fluctuate is of particu-
lar interest, since it depends on the statistical properties of the system loads
(fast, large load fluctuations will require more generators in “float” mode).

* Small standalone power systems, and some large ones, often incorporate storage to
“soak up” and emit power to accommodate source response time.

Chapter ten: The microgrid as a system of systems 271

This requirement points out the need to incorporate the statistics of the
power system into the microgrid decisionmaking process. Each set of sta-
tistics requires sensors, network bandwidth, storage, and computation. In
this case we would relate the number of generators allowed to float to the
stochastic parameters of the load time series.

In any case, the MOCS needs to be able to issue four commands to a
source: stop, start (“begin producing power according to your setpoint”),
adopt a setpoint (“produce power at the specified level”), and float (“vary the
amount of power you produce according to changes in load”). Both of the lat-
ter two are subject to preemption based on observed conditions, in the sense
that we want to retain self-protective local control for all sources, just as in
any other power system, so they will not be damaged by power surges, rapid
frequency variation, or any other power system behavior that would cause a
standalone generator to trip off.

10.7.6 Modeling and prediction

Throughout we have spoken of whether what is going to happen is what the
MOCS expects. One essential implication of this sort of statement is that the
MOCS have expectations. The MOCS will attend to its expectations in two
different ways: First, if the expected state is undesirable, the MOCS should
recognize this and act to keep the power system from entering that state.
Second, the MOCS should be able to sense whether its expectations are con-
sistent with reality and respond accordingly. Note the MOCS knows about
reality only what its sensors tell it.

The MOCS should have a model of the power system at its disposal in
order to be able to predict its future state. The time scale of interest is the
shorter end of the long-term scale—tens of minutes—since the MOCS cannot
react to faster events.

10.7.7 Planning and monitoring

The MOCS needs to determine its actions based on the difference between
what it thinks the future state will be and what it would like the future state
to be. Under desirable conditions, this should be based on efficiency. Achiev-
ing a given state requires planning, which means essentially determining
a series of steps likely to achieve a desired state given an initial state. The
general planning cycle is:

 1. Determine an achievable goal state.
 2. Determine a sequence of steps that should result in the goal state given

the initial state.
 3. Predict the sequence of intermediate states that should result from

applying the steps in the plan.
 4. Begin executing the steps.

272 Laurence R. Phillips

 5. Compare the actual state after each step with the appropriate predicted
post-step state.

 6. Replan when significant discrepancies arise.

10.7.8 Computation

Computation can be regarded as a service in the sense that the choice of com-
putational engine is essentially an implementation detail. Using grid services
to accomplish computation is discussed in [16]. We can, however, say some-
thing about the computational requirements of the microgrid system. Two
kinds of computation are needed to operate the microgrid: mathematical and
symbolic. Mathematical computation is needed to answer questions of the
sort: “Is the load increasing or decreasing? At what rate? Is it about to exceed
the amount of power that can be produced by the generators that are cur-
rently running?” Symbolic computation is needed to answer questions of the
sort: “Is a human operator attempting to override a policy-derived parameter
setting? If so, under what conditions is the override allowed? Are those condi-
tions currently in force?” Mathematical computation and symbolic computa-
tion can appear identical, depending on viewpoint and level. The distinction
between “mathematical” and “logical” resides in the interpretation of the
results of the actions needed to specify the behavior of the system.

Execution of the various distributed algorithms, encryption schemes,
communication protocols, and user interaction will require a certain level of
around-the-clock dedicated CPU time.

10.8 Microgrid use cases
It is safe to say that, in almost every case where electric power is needed,
the user will choose to connect to the primary grid if it is possible. This is
because it is cheap, safe, convenient, reliable, and does not require power
engineers on staff. On the other hand, primary grids have been known to
fail and can be damaged by disasters and adversarial attacks. Microgrids are
inherently resistant to widespread or cascading failures because they can
operate standalone. This enables microgrids to island—isolate themselves
from the primary grid.

A microgrid will be operated either standalone or connected to a large
power system, normally the primary power grid. It is not hard to imagine
a microgrid meant to serve an isolated set of loads that will never be con-
nected to the primary grid. This kind of microgrid is relevant to military
uses (shipboard power systems are microgrids), space exploration, and small
communities “off the grid.”

The desirable situation, however, seems to be a collection of power sources
organized into microgrids which are in turn organized into cooperatives of
some kind.

Chapter ten: The microgrid as a system of systems 273

10.8.1 Operation under normal conditions

Operation under normal conditions consists in the most general way of
countering influences that would push the system out of a desirable state.
The MOCS should recognize when the power system is in a desirable state
and act to preserve it. Desirable system conditions are called liveness condi-
tions. The MOCS also needs to recognize when changes in the power system
indicate that the system will leave the desirable state if trends continue.

10.8.2 Operation under anomalous, unexpected,
and failure conditions

The MOCS should recognize that the system is in an undesirable state and
act to correct this. Undesirable system conditions are called safety conditions.
As in the simple use case presented at the beginning of the chapter in “Moti-
vation: a straightforward microgrid use case” (Section 10.1.1), there are two
essential elements to dealing with unexpected events: first, realizing that
something is not right; second, deciding what to do about it.

10.8.3 Operation at system capacity

Primarily, the decisionmaker needs to know whether any of its generators
are not yet producing power, and if so, one or more would be started to
accommodate the predicted increase in load. If not, steps must be taken to
curtail the load, which cannot exceed production. This is simple arithmetic
and counting, as long as which generators are producing power—and which
are not—is known.

Sources operating can produce some additional power, although at the
point where the capacity of an operating generator is about to be exceeded,
this is not much and is used only rarely. A generator operating at its optimal
point and whose power output is controllable can generally be made to pro-
duce more power, but they are seldom operated this way because it wears
them out quickly, and the regime beyond the optimal point is uneconomical
at best. Producing power in this regime would be used only under unusual
circumstances, if ever.

Data giving the optimum power production level of each generator, the
amount by which this can be exceeded, and the effect this would have on
maintenance would be stored associated with the generator.

10.8.4 Operation connected to the primary grid

10.8.4.1 Central control when connected to the main grid
When a set of microsources is run with a central controller and tied into the
main power infrastructure, it is like a big power plant in every way but size.
Although outwardly comparable to a microgrid, this kind of installation is

274 Laurence R. Phillips

not operated in a distributed fashion and is, conceptually speaking, only a
little more complex to operate than a single generator.

Control is centralized either in the sense of having all sensor and control
channels connected into a common control site, or in the sense of having
the generators all reporting to and obeying a single controller over a net-
work. There are technical issues with ensuring that the generation of power
is coordinated—having suitably configured droop rates, deciding when to
turn generators on or off to follow load, establishing a policy to determine
the generation in response to local load, etc.—but the agency controlling the
phase and frequency of our local system can use the bulk power supply phase
and frequency as reference, and the detail that the power is being generated
by an array of microturbines or other such devices can be largely abstracted
away, since only minor variation is caused by the slight differences in trans-
mission path between the individual generators and the loads.

This satisfies the general desire of the utility operator that a power resource
be simple to operate. A study by the Consortium for Electric Reliability Tech-
nology Solutions (CERTS) [8] states: “the [electric power] utility does not want
to be burdened with additional control issues. . . . The first goal is for the micro-
grid system to appear to the utility only as a controllable load. Local electric
utilities are justifiably concerned about uncontrolled voltage regulation.”

Such centrally controlled microplants can be used to ensure continuity of
power when access to bulk power in interrupted, or can serve as local sup-
ply for peak-shaving, load reduction, or power conditioning (in which case
access to bulk power becomes the reserve, rather than the local microsources).
Typically such plants are run as fixed, homogenous installations; often they
are engineered to meet specific requirements associated with a known load’s
characteristics, and new generation capacity is either not added, or added
to match expansion of the load. Because the plant and load are most likely
owned by the same organization, expansion and reduction of the facility
probably does not have to be coordinated between very many parties.

10.8.4.2 Distributed control when connected to the main grid
This applies to a collection of microsources that are independent of one
another, not collocated, operating autonomously, and connected indepen-
dently to the bulk power network, which acts as a phase and frequency ref-
erence and provides virtually unlimited capacitance. The overt question is
how much power each of the generators must produce under the assumption
that excesses or deficits will be accommodated by the bulk power network.
In general these microsystems are not all owned by the same owner, which
means generation and compensation have to be negotiated. When the bulk
power system is the national infrastructure (relatively few producers; many
consumers), this may be effectively brokered by the bulk power network,
but for systems that are distributed with the intent of supplying a certain set
of distributed loads, and for systems that must maintain certain conditions
(for security, safeguards, etc.), collective internal negotiation will be a greater

Chapter ten: The microgrid as a system of systems 275

issue. This case, and the corresponding disconnected case, will be of interest
to facilities that want the benefits of a locally maintained microgrid but want
the system to handle changing topological configurations (the connection
and disconnection of portions of the facility from one another, for example)
gracefully and do not want the liability of a central point of failure in the
power supply.

10.8.5 Operation disconnected from the primary grid

The smaller the power system, the more important it is to balance power pro-
duction and power use at any given moment, because relatively smaller—
and therefore more common—fluctuations in either production or load can
cause the sources to self-protectively halt, or “trip.” Fluctuations in voltage or
frequency that would be damped out in a large power system, because of the
inertia inherent in the large rotating mass generators ordinarily employed,
can cause tripping and cascading failure in a microgrid. Figure 10.2 illus-
trates the effect on the three-phase voltage of a simulated power system
when an operating 35-kW source is connected to the system and begins
providing power. Although stability quickly returns, the effect is dramatic.
In short, the stability of the microgrid requires somewhat closer attention,
because common events cause effects that are proportionally much larger in
the microgrid than they would be in a large power system.

10.8.5.1 Central control when disconnected from the main grid
When a centralized microgrid has its connection to bulk power severed, or if
it is constructed with no connection to a bulk power network, it must operate
in such a way that the load is met within predefined tolerances (or selectively
shed), and the generators must maintain phase and frequency in synch with
one another and within the tolerances required by the load. Because com-
mand is central, an “official” reference phase and frequency can be main-
tained. For homogenous plants the difficulties associated with centrally
controlled power systems have been addressed, but unplanned addition or

25.225.1525.1

(Vabc)

25.0525

–400

–200

200

400

0

Figure 10.2 Momentary three-phase voltage instability caused by generator cut-in.

276 Laurence R. Phillips

removal of capacity remains difficult. This is referred to as “plug and play”
(often shortened to “p&p”), and Lasseter [18] has shown that, given certain
sensing and logic capability, a collection of plug-and-play sources* can be
operated as a microgrid with only casual oversight.

The nominal p&p source makes decisions based on the condition of the
power waveform at the point where the source is connected to the power
grid. These independent sources cannot, however, make decisions about
ensemble operation. In essence, with additional power conditioning hard-
ware, sensors, and logic, a source can be given the capability of matching its
phase and frequency to the values of the primary circuit, but cannot decide
when to allow another source precedence. Although information about the
entire power system is present in the waveform, the state of the system that
produced the waveform cannot be reconstructed.

In small to mid-scale cases, the valid “island” when bulk power is sev-
ered will be determined in advance based on the centrally owned or man-
aged facility, the centrally controlled plant, the load the plant is designed to
support, and the requirements of how the load must be supported in this
condition. Islanding portions of the national power grid remains a far more
difficult problem, not primarily because of the technical challenges of coor-
dinating the significant alterations in load and generation as the network
undergoes substantial topological changes, but because of the legislative,
procedural, and financial issues that come into play for a collaboratively
managed system that is run at every moment under the auspices of prear-
ranged contracts.

10.8.5.2 Distributed control when disconnected from the main grid
This is the most difficult case. Phase and frequency have to be controlled col-
laboratively, since there is neither a main grid nor a central authority avail-
able to supply frequency or phase reference, and power generation has to be
negotiated without the benefit of a large inertial bus to absorb or supply the
necessary excess. These systems could be flat or hierarchically organized,
with local power subsystems ganging together to form semiautonomous
agencies that interact with one another at an amortized level, leaving the
internal decisionmaking entities to negotiate how the details will be accom-
plished in support of the higher-level contracts made with other organiza-
tions. The multi-DMA system discussed in Reference 2 was designed to
accommodate this case.

10.8.6 Transition from the connected to the disconnected state

When primary grid instability and/or power condition threaten to cause pro-
tective response in the microgrid, the MOCS may wish to disconnect from

* Note the general power system is already considered plug and play with respect to loads,
in that proper operation is mostly about managing sources in the face of load variation.

Chapter ten: The microgrid as a system of systems 277

its primary grid. Before disconnecting, the MOCS must determine the dis-
parity between the power being generated within the island and the power
being used and decide on a response to the predicted disparity. If too much
power is being generated, the MOCS needs to shut down and/or lower the
setpoints of some generators; if not enough, the MOCS needs to shed some
load. If the predicted primary grid disturbance will occur too soon to have
time for this, it may be necessary to disconnect without proper condition,
allow the protective response of the microgrid, then restore or blackstart, as
discussed in [19].

The problem of how to split an operating grid into islands to best serve
current loads with operating sources is addressed in [20–22], but each deter-
mines where to split the grid to best serve demand. We have the inverse
problem. We know where to split the grid (i.e., at the microgrid boundary),
and we need to know how to shed load or increase production so that the
split will not cause the microgrid to go black. We must approach the problem
as in [23] and decide when to split in the only place the split can occur and
minimize the impact of the resulting disturbance.

10.9 Conclusions and future work
Penetration of microgrids requires automation of their day-to-day operation.
Advances in power control technology have enabled the essential connect-
supply-shutdown-disconnect operations without significant higher-level
concern. What is needed is a unified logic process to apply the appropriate
algorithms for deciding which sources should be providing power, how the
power system should be reconfigured to isolate faults, what steps to take to
recover from upsets, how to restore the system to operation after primary
failures, what to do to halt or slow cascading failure, and when to separate
from the primary grid when blackout threatens. In addition, the system must
respond to requests from humans. The means to accomplish these goals is
a distributed set of automated decisionmaking agencies (DMAs) organized
into management, operating, and control systems (MOCS) with the neces-
sary information to make the appropriate operational decisions and the sens-
ing and effecting mechanisms needed to carry them out. The DMA MOCS
should be built with reference to a policy that it is equipped to in the context
of a set of operational cells organized into cooperatives.

References
 1. Energy Information Administration. 2006. Total Capacity of Dispersed and

Distributed Generators by Technology Type, 2005 Electric Power Annual, Energy
Information Administration. http://www.eia.doe.gov/cneaf/electricity/epa/
epat2p7c.html.

 2. Phillips, L. R., Link, H. E., Smith, R. B., and Weiland, L. A. 2006 Agent-Based Control
of Distributed Infrastructure Resources. Sandia Technical Report SAND2005-7937.

278 Laurence R. Phillips

 3. Ting, T., Rao, M., and Loo, C. 2006. A novel approach for unit commitment prob-
lem via an effective hybrid particle swarm optimization. IEEE Trans. on Power
Systems 21:411–418.

 4. Valenzuela, J., and Smith, A. E. 2002. A seeded memetic algorithm for large unit
commitment problems. J. Heuristics 8:173–195.

 5. U.S.-Canada Power System Outage Task Force. 2004. Final Report on the August
14, 2003 Blackout in the United States and Canada: Causes and Recommendations.
U.S.-Canada Power System Outage Task Force, North American Electric Reli-
ability Corporation. http://www.nerc.com/~filez/blackout.html.

 6. Agneholm, E. 1996. The restoration process following a major breakdown in a
power system. Tech. Rep. 230L, Chalmers University of Technology, Göteborg,
Sweden.

 7. Firestone, R. and Marnay, C. 2005. Energy manager design for microgrids. Tech.
Rep. LBNL-54447, Lawrence Berkeley National Laboratory.

 8. Lasseter, R., Akhil, A., Marnay, C., Stephens, J., Dagle, J., Guttromson, R.,
Meliopoulous, A., Yinger, R., and Eto, J. 2002. Integration of distributed energy
resources: The CERTS microgrid concept. Tech. Rep. LBNL-50829, Consortium
for Electric Reliability Technology Solutions.

 9. Stevens, J. 2005. Characterization of microgrids in the United States. Technical
report, Resource Dynamics Corporation. http://www.electricdistribution.ctc.
com/pdfs/RDC_Microgrid_Whitepaper_1-7-05.pdf.

 10. Boyes, J. and Menicucci, D. 2007. Energy storage: the emerging nucleus of
America’s energy surety future. Distributed Energy, Vol. 5, January/February
2007. http://www.erosioncontrol.com/de_0701_energy.html.

 11. Bouktir, T. and Slimani, L. 2005. Optimal power flow of the Algerian electri-
cal network using an ant colony optimization method. Leonardo Journal of Sci-
ences 7:43–57, Amici Publishing House.

 12. Wang, C.-R., Yuan, H.-J., Huang, Z.-Q., Zhang, J.-W., and Sun, C.-J. 2005. A modi-
fied particle swarm optimization algorithm and its application in optimal power
flow problem. Proc. Int. Conf. on Machine Learning and Cybernetics 5:2885–2889.

 13. Berg, M. and Stamp, J. 2005. A Reference Model for Control and Automa-
tion Systems in Electric Power. Sandia National Laboratories Report SAND
2005-1000C. http://www.sandia.gov/scada/documents/sand_2005_1000C.pdf.

 14. Kilman, D. and Stamp, J. 2005. Framework for SCADA Security Policy. San-
dia National Laboratories Report SAND 2005-1002C. http://www.sandia.gov/
scada/documents/sand_2005_1002C.pdf.

 15. Phillips, L., Baca, M., Hills, J., Margulies, J., Tejani, B., Richardson, B., and Wei-
land, L. 2005. Analysis of Operations and Cyber Security Policies for a System
of Cooperating Flexible Alternating Current Transmission System (FACTS)
Devices. Sandia National Laboratories Technical Report SAND2005-7301.
http://www.sandia.gov/scada/documents/sand_2005_7301.pdf.

 16. Phillips, L. R. 2007. Managing microgrids using grid services. In Proc. IEEE Int.
Conf. on System of Systems Engineering, April 2007, pp. 1–5.

 17. Kueck, J. D. et al. 2003. Microgrid Energy Management System; ORNL/
TM-2002/242, Oak Ridge National Laboratory. http://www.ornl.gov/sci/btc/
apps/%20Restructuring/ORNLTM2002242rev.pdf.

 18. Lasseter, R. H. and Piagi, P. 2004. Microgrid: a conceptual solution. In Proc.
Power Electronics Specialists Conference.

 19. Lopes, J. A. P., Moreira, C. C. L., and Resende, F. O. 2005. Microgrids black start
and islanded operation. In Proc. 15th Power Systems Computation Conf.

Chapter ten: The microgrid as a system of systems 279

 20. Liu, W., Cartes, D. A., and Venayagamoorthy, G. K. 2006. Application of particle
swarm optimization to split power grids into islands. In Proc. IEEE Int. Conf. on
System of Systems Engineering.

 21. Sun, K., Zheng, D.-Z., and Lu, Q. 2006. Searching for feasible splitting strate-
gies of controlled system islanding. In IEE Proc. on Generation, Transmission, and
Distribution 153:89–98.

 22. Zhao, Q., Sun, K., Zheng, D.-Z., Ma, J., and Lu, Q. 2003. A study of system split-
ting strategies for island operation of power system: a two-phase method based
on OBDDS. In IEEE Trans. on Power Systems 18:1556–1565.

 23. Sodzawiczny, G., and Sowa, P. 1999. Multicriterial adaptive load shedding algo-
rithm. In Int. Conf. on Electric Power Engineering, PowerTech ’99, p. 192.

281

chapter eleven

An integrated intelligent
decision support system
based on sensor and
computer networks
Qishi Wu, Mengxia Zhu, Nageswara S. V. Rao,
S. Sitharama Iyengar, Richard R. Brooks, and Min Meng

Contents

11.1 Introduction.. 282
11.2 Related work...283
11.3 System framework ...285
11.4 Technical solutions .. 287

11.4.1 Sensor deployment .. 289
11.4.1.1 Sensor deployment problem formulation 289
11.4.1.2 Probabilistic sensor detection model 290
11.4.1.3 An approximate solution using genetic algorithm 291
11.4.1.4 Performance evaluation .. 293

11.4.2 Sensor data routing ... 294
11.4.2.1 Adaptive and energy-efficient sensor data routing

based on spin glass theory ... 294
11.4.2.2 Data routing in mobile agent-based distributed

sensor networks ... 297
11.4.2.3 Data routing in multi-sink sensor networks300

11.4.3 Network mapping for optimal computing pipeline
configuration .. 301
11.4.3.1 Cost models of pipeline and network components302
11.4.3.2 Mapping problem formulation302
11.4.3.3 Optimal linear pipeline configuration (OLPC)304

11.4.4 Sensor data fusion ...306
11.4.4.1 Problem formulation ...306
11.4.4.2 Threshold-OR fusion method 307
11.4.4.3 Simulation results .. 311

282 Qishi Wu et al.

11.5 Conclusion .. 313
Acknowledgments .. 314
References .. 314

11.1 Introduction
Wireless sensor networks are becoming increasingly pervasive in many
military, civil, agricultural, and industrial applications ranging from mis-
sion-critical homeland security defense, battlefield assessment, health care
improvement, environment surveillance, climate research, disaster recovery,
ecological forestry and wildlife monitoring, to manufacturing process con-
trol. The large amount of data produced in sensor networks combined with
complex mathematical models in various applications is far beyond the pro-
cessing and computing capabilities of a sensor node, or even a high-end PC
workstation, and therefore must be transmitted to computer networks such
as the Internet for distributed processing where abundant system resources
such as computing power, storage space, and network bandwidth are widely
deployed. In this chapter, we present a general framework of IDSS-SC, an
intelligent decision support system that integrates both sensing and comput-
ing subsystems.

The development of the IDSS-SC framework is driven by the needs for
capturing, storing, transmitting, sharing, processing, fusing, and analyzing
large-scale observational sensor data in an integrated environment. Rapid
advances in sensor and network technology have enabled distributed sensor
networks to evolve from small clusters of large sensors to large swarms of
micro-sensors, from fixed sensor nodes to mobile sensor nodes, from wired
communications to wireless communications, from static network topology
to dynamically changing topology, and from homogeneous sensor networks
to heterogeneous sensor networks. These advances in various technological
areas have also brought new challenges of managing a colossal amount of
multidimensional sensor data of high redundancy in a bandwidth-limited,
power-constraint, unstable, and dynamic sensor network environment. The
success of large-scale computation-intensive sensor network applications
requires the development of an integrated network and system architecture
where data processing is moved from a single base station to a set of power-
ful computing nodes distributed in wide-area computer networks.

To make the IDSS-SC more concrete, we consider a real-life application
where a dirty bomb is reported to have been dropped in a residential area
with dense population. In response to this terrorist incident, a number of
sensor nodes of different types are deployed either randomly or strategically
within the affected region to create a wireless sensor network and collect
various measurements including the level of chemical pollution or radia-
tion, acoustic and seismic signals, temperature, atmospheric pressure, wind
power, and other environmental parameters. A complex mathematical model
composed of air absorption, ground attenuation, wind effect, and many

Chapter eleven: An integrated intelligent decision support system 283

other factors is constructed to simulate the explosion process and determine
the pollution diffusion pattern, which is used to guide the evacuation of resi-
dents in the region. The complexity of the diffusion model and the enormous
volume of real-time sensor readings render a single computer inadequate to
perform data processing and explosion simulation in a timely manner. In the
IDSS-SC framework, the sensor data collected using energy-efficient rout-
ing methods is transmitted to wide-area computer networks composed of
supercomputers, PC clusters, and many other powerful computing engines.
The computation-intensive data fusion and explosion simulation tasks are
partitioned and distributed to these high-performance computing facilities,
which generate and send the simulated pollution dispersion map to the com-
mand center to assist in the evacuation of residents.

Terrorist detection and monitoring in homeland security defense is
another example using such an integrated IDSS-SC. A number of cameras or
other imaging sensors are installed at a custom clearance gate to capture and
record from different angles the physical features of every passenger enter-
ing the custom. The captured images are continuously transferred to a set of
strategically selected computing nodes that perform a sequence of computing
tasks including image augmentation, feature extraction and detection, facial
reconstruction, pattern recognition, data mining, and identity matching. The
individual detection results based on a set of images collected from various
angles are fused to reach a final decision to assist in the investigative actions.

The structure of IDSS-SC is divided into three logical components: (1)
sensing field covered by wireless sensor networks, (2) cyberspace based on
computer networks, and (3) command control center for intelligent decision
making. The general framework of IDSS-SC incorporates various subsystems
for sensor deployment, data routing, distributed computing, and informa-
tion fusion. The integrated system is deployed in a distributed environment
composed of both wireless sensor networks for data collection and wired
computer networks for data processing. For these subsystems, we formulate
the analytical problems and develop approximate or exact solutions. These
subsystems are implemented and evaluated through either experiments or
simulations in various application scenarios. The extensive results demon-
strate that these component solutions imbue the integrated system with the
desirable and useful quality of intelligence.

The rest of the chapter is organized as follows. We introduce the related
work in Section 11.2. The detailed system framework of IDSS-SC is described
in Section 11.3. The technical solution to each subsystem is presented in Sec-
tion 11.4. We conclude our work in Section 11.5.

11.2 Related work
We conduct a survey on the related work of the subsystems of IDSS-SC in the
areas of sensor deployment, data routing, network mapping for distributed
computing, and information fusion.

284 Qishi Wu et al.

Sensor deployment problems with practical considerations have been
studied in depth for decades in a variety of scenarios. In the adaptive beacon
placement, the strategy is to place a large number of sensors and then turn
off some of them based on their localization information. In this context,
Bulusu et al. [3] presented an adaptive algorithm based on measurements by
considering the evaluations for spatial localization using radio frequency-
proximity. In a related area, Guibas et al. [19] presented a unique solution to
the visibility-based pursuit evasion problem in robotics applications. In wire-
less sensor networks with the global knowledge of node positions, Meguer-
dichian et al. [27] used a Voronoi diagram to compute the maximal breach
path for the worst-case coverage and Delaunay triangulation to compute the
maximal support paths for the best-case coverage. Voronoi diagrams were
also used by Wang et al. to discover coverage holes in [39], where several sen-
sor deployment protocols were designed to provide high coverage by moving
sensors from densely deployed areas to sparsely deployed areas. Both static
and mobile sensor deployment schemes were considered to optimize sens-
ing coverage and secure connectivity. Many research efforts were devoted
to the investigation of sensor deployment strategies that provide sufficient
coverage for distributed detection. Martinez and Bullo [26] studied optimal
sensor placement and motion coordination strategies for mobile sensor net-
works in a target tracking scenario. To improve the integrity of sensed data
and minimize the energy consumption for data communications, Ganesan
et al. [17] tackled the combined optimization problem of sensor placement
and transmission structure for data gathering.

Data routing is another focus area attracting increasing attention of
researchers in sensor networks. Many routing protocols have been proposed
for sensor networks, such as directed diffusion [21], two-tier data dissemina-
tion (TTDD) [44], mesh [43], and low energy adaptive clustering hierarchy
(LEACH) [20]. Several recent works [7,8,12–16,22,25,28,40,45,47] addressed
security problems in sensor networks. The existing routing protocols fall
into two categories, namely, table-driven (proactive) routing and source-
initiated on-demand (reactive) routing. Proactive sensor data routing main-
tains up-to-date routing tables, which provide paths from each node to every
other node in the network. Any topology change is propagated throughout
the network to update the routing table of each node. The storage require-
ment of routing tables and the transmission overhead of topology changes
are the main drawbacks of this category of protocols. Reactive methods run
on the demand of a source node to a destination node; thus, the overhead
for control packet transmission is tremendously reduced compared with
the table-driven routing. This reactive routing process starts with the route
discovery procedure, followed by the route maintenance procedure until
either the destination becomes inaccessible or the route is no longer desired
[32]. Most protocols use the shortest path as the only performance metric in
data routing without accounting for other considerations, including power
consumption. For ad hoc sensor networks, routing protocols must deal with

Chapter eleven: An integrated intelligent decision support system 285

some unique constraints such as limited power, low bandwidth, high error
rate and dynamic topology, which motivate us to explore routing protocols
that are energy efficient, self-adaptive, and error tolerant.

A considerable amount of research efforts have been devoted to the
design of scheduling algorithms in various disciplines to achieve the best
resource utilization by carefully mapping computing modules onto network
or processor nodes [1,9,10,18,23,34]. Task scheduling and network mapping
continue to be the focus of attention in distributed computing due to their
theoretical significance and practical importance, especially as the grid
computing technology prevails [4–6]. A grid scheduling algorithm, called
Streamline [2], is developed for placing a coarse-grain dataflow graph on
available grid resources. This scheduling heuristic is specifically designed to
improve the performance of streaming applications with various demands
in grid environments. Kwok et al. proposed a Dynamic Critical-Path (DCP)
scheduling algorithm [24] to map task graphs with arbitrary computation
and communication costs to a distributed network environment consisting
of fully connected identical nodes. Chen et al. proposed and evaluated a run-
time algorithm for supporting adaptive execution of distributed data min-
ing on streaming data [11]. However, few previous works have addressed
the global optimization of the decomposition and mapping of an applica-
tion computing pipeline under varying network conditions in a distributed
environment. In addition, existing approaches that map computing modules
to network nodes are mostly empirical and require manual configuration.
Their implementations are typically limited to a traditional client and server
mode with no intermediate nodes considered.

Information fusion is critical to the performance of sensor network appli-
cations. Many existing non-model-based or model-based fusion methodolo-
gies are derived from some variants of decision rules such as Voting, Bayes
Criterion, Maximum a Posterior Criterion (MAP), and Neyman-Pearson
[30,31,33,35–38]. Data fusion is in general categorized as low-, intermediate-,
or high-level fusion, depending on the stage where the actual fusion process
takes place.

The general framework of IDSS-SC we proposed integrates novel solu-
tions in the aforementioned areas such as sensor deployment, data routing,
network mapping, and information fusion for intelligent decision support.
Through IDSS-SC, we not only provide the decision maker the best guidance
for action, but also ensure the accuracy of each final decision fused from
individual observations.

11.3 System framework
The application domains of IDSS-SC span from military operations, home-
land and global security defense, to environment monitoring. The success
of these large-scale sensor network applications requires transmitting large

286 Qishi Wu et al.

amounts of sensor data to computer systems, accessing remote databases,
and generating a quick response at the time of critical incidents.

The component subsystems and design process of the proposed IDSS-SC
framework are illustrated in Figure 11.1. From a spatial and temporal perspec-
tive, the data flow in IDSS-SC runs through the following three major areas:

Sensing field covered by wireless sensor networks•	
 A large number of sensor nodes on the order of hundreds, thousands,

or even millions may be deployed in vast geographical areas to col-
lect multimodal environmental measurements. Appropriate sensor
deployment schemes must be determined in different applications
for various deployment purposes such as target detection, localiza-
tion, and tracking. The large amount of sensor data also requires
energy-efficient, low-latency, and fault-tolerant routing algorithms
to gather individual sensor readings at a processing element or a
cluster head, where the data is preprocessed and transmitted to
wide-area computer networks for further processing.
Cyberspace based on computer networks•	

 Many computing-intensive sensor network applications feature a so-
called computing pipeline that consists of a sequence of computing

Sensor Deployment

Data Routing

Data Fusion

Decision Making

Sensing Field:
Wireless Sensor Network

Cyberspace:
Wired Computer Network

Command Control Center

Distributed
Data Processing

Figure 11.1 Intelligent decision support system integrating sensing and computing
subsystems: system components and design process.

Chapter eleven: An integrated intelligent decision support system 287

modules.* The large amount of data generated by wireless sensor net-
works is fed into this computing pipeline to produce required results.
Due to the disparity and heterogeneity of system resources distrib-
uted in computer networks, it is critical to find an optimal pipeline
partitioning and network mapping scheme that achieves the best sys-
tem performance and resource utilization. A reliable and fault-toler-
ant data fusion algorithm then integrates the computed local results
from the data collected by individual sensors or separated sectors of
sensors to reach a global optimal solution for final decision support.
Command control center for intelligent decision making•	

 Critical situations in military operations or homeland security require
real-time decision making in the presence of imminent threat. The
command control center makes intelligent decisions based on the
final results from sensor data processing and information fusion.

The integrated sensing and computing system is deployed in a distributed
environment composed of both wireless sensor networks for data collection
and wired computer networks for data processing. The IDSS-SC system archi-
tecture with a general computing pipeline is illustrated in Figure 11.2. There
are four virtual component nodes in IDSS-SC, i.e., client or user at the com-
mand center, central management (CM), dynamic data source (DS) collected
by and transmitted from sensor networks, and computing service (CS) distrib-
uted in computer networks, which are connected together by network links.

In the sensing field, the sensors deployed in the surveillance region form
a network of certain architecture to collect environmental measurements,
which are transmitted via energy-efficient routing mechanisms to wired
computer networks for data processing and analysis. On the other hand,
in the cyberspace, a client may initiate a particular surveillance, detection,
or tracking task by sending a request containing environmental attributes,
predicate constraints, sampling interval, computational models, and other
control parameters to a designated CM node. CM determines the best system
configuration based on the global knowledge of data sources and accessible
distributed resources such as computing node capabilities and current net-
work link bandwidths. The pipeline of the selected computing method is
strategically partitioned into groups and mapped onto an appropriate set
of CS nodes to execute the computing modules. A final decision fused from
local results based on individual sensor data is sent to the command control
center for final intelligent decision making.

11.4 Technical solutions
In this section, we discuss the technical solutions in IDSS-SC: (1) sensor
deployment strategy based on a two-dimensional genetic algorithm to

* Computing modules are also referred to as subtasks or stages in certain contexts.

288 Qishi Wu et al.

Se
ns

or
 N

et
w

or
k

1

Se
ns

or
 N

et
w

or
k

2

Se
ns

or
 N

et
w

or
k

3

Ba
se

 S
ta

tio
n

1
Pr

oc
es

sin
g

El
em

en
t

Ba
se

 S
ta

tio
n

2
Pr

oc
es

sin
g

El
em

en
t

Ba
se

 S
ta

tio
n

3
Pr

oc
es

sin
g

El
em

en
t

Co
m

pu
tin

g
Se

rv
ic

e 1
Co

m
pu

tin
g

Se
rv

ic
e 2

Co
m

pu
tin

g
Se

rv
ic

e 3
D

at
a

D
at

a

D
at

a
D

at
a

Re
su

lts

Re
su

lts

Re
qu

es
ts

Req
ue

sts
/M

ap
pin

g/R
ou

tin
g

Re
qu

es
ts

Ce
nt

ra
l M

an
ag

em
en

t

Cl
ie

nt
 2

Cl
ie

nt
 1

D
at

a
Re

po
sit

or
y

Re
ad

in
g/

Q
ue

ry

Re
ad

in
g/

Q
ue

ry

Re
ad

in
g/

Q
ue

ry

Fi
gu

re
 1

1.
2

ID
SS

-S
C

 s
ys

te
m

 a
rc

h
ite

ct
u

re
.

Chapter eleven: An integrated intelligent decision support system 289

achieve maximum coverage with cost constraints; (2) data routing scheme
to achieve maximum signal strength with minimum path loss, energy effi-
ciency, and fault tolerance; (3) network mapping method based on dynamic
programming to assign computing modules to network nodes for sensor
data processing with minimum end-to-end delay; and (4) binary decision
fusion rule that derives threshold bounds to improve system hit rate and false
alarm rate. These subsystems are implemented and evaluated through either
experiments or simulations in various application scenarios. The extensive
results demonstrate that these component solutions imbue the integrated
system with the desirable and useful quality of intelligence.

11.4.1 Sensor deployment

One practical goal of sensor deployment in the design of distributed sen-
sor systems is to achieve an optimal monitoring and surveillance of a target
region. The optimality of a sensor deployment scheme is a trade-off between
implementation cost and coverage quality levels. We consider a probabilistic
sensing model that provides different sensing capabilities in terms of cover-
age range and detection quality with different costs. A sensor deployment
problem for a planar grid region is formulated as a combinatorial optimiza-
tion problem with the objective of maximizing the overall detection prob-
ability within a given deployment cost. This problem has been shown to be
NP-complete in [42], and we present here an approximate solution based on a
two-dimensional genetic algorithm. The solution is obtained by the specific
choices of genetic encoding, fitness function, and genetic operators such as
crossover, mutation, and translocation for this problem. Simulation results of
various problem sizes are presented to show the benefits of this method as well
as its comparative performance with a greedy sensor placement method.

11.4.1.1 Sensor deployment problem formulation
A planar surveillance region R is to be monitored by a set of sensors to
detect a target T if located somewhere in the region (our overall method is
applicable to the three-dimensional space). The planar surveillance region is
divided into a number of uniform contiguous rectangular cells with identi-
cal dimensions. A circular coverage area can be approximated by a set of
cells within a certain maximum detection distance of the sensor. The main
reason we discretize the 2-D space is to facilitate an efficient approximation
of the sensor’s sensing behavior and the region’s coverage probability in the
later computation of the genetic algorithm-based solution. When the ratio of
the sensor detection range to the cell dimension is very large, the sensor cov-
erage area made up of many tiny rectangular cells will approach a circle.

Assume there are q types of sensors and a sensor of the k-th type is
denoted by Sk for k ∈ {1, 2, …, q}. There are Nk sensors of type k. A sensor S
can be deployed in the middle of cell C(i, j) to cover the discretized circular
area AS(i, j). A sensor Sk deployed at cell C(i, j) detects the target T ∈ ASk

(i, j)

290 Qishi Wu et al.

according to the probability distribution P{Sk|T ∈ ASk
(i, j)} while incurring

the cost w(k). A sensor deployment is a function ℜ from the cells of R to
{ε, 1, 2, . . . , q} such that ℜ(i, j) is the type of sensor deployed at the cell C(i, j);
ℜ(i, j) = ε indicates no sensor is deployed, i.e., w(ε) = 0. The cost of a sensor
deployment ℜ is the sum of cost of all sensors deployed in region R, which
is given by:

 Cost w i j
C i j R

() ()
()

ℜ = ℜ ,()
, ∈
∑ (11.1)

The detection probability P{ℜ|T ∈ R} of deployment ℜ is the probability that
a target T located somewhere in region R will be detected by at least one
deployed sensor. The sensor deployment problem (SDP) is formally formu-
lated as follows:

Given a surveillance region R, cost budget Q, q types of
sensors, and Nk sensors of type k, find a sensor deploy-
ment ℜ to maximize detection probability P{ℜ|T ∈ R}
under the constraint Cost(ℜ) ≤ Q.

Informally, we are required to locate the sensors of various types on the
grid points to achieve a maximum detection probability while keeping the
deployment cost under a specified budget. The decision version of the SDP
asks for a deployment with detection probability at least A under the same
cost condition, i.e., P{R|T ∈ R} ≥ A and Cost(ℜ) ≤ Q.

11.4.1.2 Probabilistic sensor detection model
We consider that each sensor type is specified by its local detection probabil-
ity of detecting a target at a point within its detection region. With regard
to a sensor, detection is more likely as a target approaches the sensor. The
cumulative detection probability of a sensor for a region is computed by inte-
grating its local detection probability for detecting a target as the target gets
close to the sensor, passes near the sensor, and then leaves it behind.

We construct a sensor performance model specified by a Gaussian cumu-
lative detection probability. Given the detection probability density function
pSk(x) for a sensor of type k, the detection probability P{Sk|T ∈ C(i, j)} for cell
C(i, j) is given by:

 P S T C i j p x dxk

x C i j

Sk
| () ()

()

∈ ,{ } =
∈ ,
∫ (11.2)

After obtaining the individual detection probabilities for all the cells cov-
ered by sensor Sk , we employ Gaussian function to compute the cumulative

Chapter eleven: An integrated intelligent decision support system 291

detection probability. The Gaussian cumulative detection probability approx-
imating a real sensor detection performance is defined by:

 P S P S T A ek S k S Sk k k

Sk() { | }, , = , , ∈ = ,,

−
⋅

τ α τ α τ

τ
α

2

2 2

ττ ∈ ,[]0 dSk
 (11.3)

where τ is the distance from the target to the sensor. The sensor detection
quality coefficient αSk

 determines the shape of the detection probability
curve. Distance τ is in the range between 0 and the maximum detection dis-
tance dSk

.

11.4.1.3 An approximate solution using genetic algorithm
Genetic algorithm is a computational model that simulates the process of
genetic selection and natural elimination in biological evolution. It has been
widely used to solve the combinatorial and nonlinear optimization prob-
lems with complex constraints or nondifferentiable objective functions. The
computation of genetic algorithm is an iterative process toward achieving
the global optimality. During the iterations, candidate solutions are retained
and ranked according to their quality. A fitness value is used to screen out
unqualified solutions. Genetic operations of crossover, mutation, transloca-
tion, inversion, addition, and deletion are then performed on those qualified
solutions to create new candidate solutions of the next generation. The above
process is carried out repeatedly until a certain stopping or convergence con-
dition is met. For simplicity, a maximum number of iterations can be chosen
to be the stopping condition. The variation difference of the fitness values
between two adjacent generations may also serve as a good indication for
convergence. To utilize the genetic algorithm method, various parts of the
SDP must be mapped to the components of the genetic algorithm.

11.4.1.3.1 Genetic encoding for sensor deployment. Since a candi-
date solution to the SDP requires a two-dimensional sensor ID matrix, we
adopt a two-dimensional numeric encoding scheme to make up the chromo-
somes instead of the conventional linear sequence. We construct a sensor ID
matrix for a possible sensor deployment scheme, where each element in the
matrix corresponds to a cell within a surveillance region. An empty value
ε in the matrix indicates that its corresponding cell has no sensor deployed
in and should be covered by the sensors deployed in its neighborhood area.
Furthermore, we arrange q types of available sensors in the following order:

 d w s d w s d w s d w sS S S k S qk q1 21 2/ () / () / () / ()≥ ≥ ≥ ≥ ≥… …

Note that dSk
 and w(sk) are the maximum detection distance and cost of

sensor of type k, respectively. Besides, each sensor type has a sensor coverage
coefficient that determines the variation of its detection capability along the

292 Qishi Wu et al.

target-sensor distance. The rank of ratio is used to decide the probability of
sensor type selected during the population initialization as well as the addi-
tion operation.

11.4.1.3.2 Fitness function. We construct the fitness function from
the objective function as:

 f P T R g() { | }ℜ = ℜ ∈ + (11.4)

where g is the penalty function for overrunning the constraint, which is
defined by:

 g
Cost Q

E Q Cost Q Cost Qm

=
ℜ ≤

∗ ∗ − ℜ / ℜ >

0, ()

(()) ()δ
 (11.5)

where δ is a proper penalty coefficient and is set to 100, and

 E d w Sm
k

S kk
= { }max / () .

11.4.1.3.3 Selection of candidates. The selection operation, also
called reproduction operation, retains good candidates and eliminates others
from the population based on the individual fitness values. It aims to inherit
good individuals either directly from the last generation or indirectly from
the new individuals produced by mating the old individuals. The frequently
used selection mechanisms include fitness proportional model, rank-based
model, expected value model, and elitist model.

In our implementation, the survival probability Bi for each individual (solu-
tion) ℜi is computed based on the following fitness proportional model:

 B f fi i

j

M

j= ℜ ℜ
=

∑() ()
1

 (11.6)

where M is the population size. The hybridization individuals are produced
according to the selection rule so that the individual with bigger Bi has a
higher probability to survive.

11.4.1.3.4 Implementation of genetic operators. The solution set of
each new generation after initial population is generated as follows. Ran-
domly select two hybridization individuals ℜu and ℜv , and combine them to
get two other individuals ℜu and ℜv of new generation by using combinato-
rial rules of crossover, mutation, inversion, translocation, addition, and dele-
tion. Some of these genetic operators are carried out on a two-dimensional

Chapter eleven: An integrated intelligent decision support system 293

basis. Except for crossover, all the other operators operate on only one parent
solution. This process continues until all M individual solutions of the new
generation are created.

11.4.1.4 Performance evaluation
We present simulation results of the approximation solution based on genetic
algorithm (GA) and compare its performances with those of a greedy solu-
tion based on uniform placement (UP) of sensors. The UP method employs
two greedy algorithms in terms of selecting the sensor that provides the
maximum ratio of detection range to unit price and deploying them in the
optimal positions. Specifically, we distribute a maximum set of “best” sen-
sors under a given budget limit in the surveillance region in an optimal way
such that the overlapping areas between adjacent sensors are minimized.

We first consider a small surveillance region of 50 × 50 cells with five dif-
ferent types of sensors. The investment limit is set to be 1800 unit expense,
and the maximum generation number is set to be 200. Upon the completion
of optimization process, the GA achieves a suboptimal deployment scheme
with detection probability of 94.52% for the surveillance region within the
investment budget. A 3-D display of the local coverage probabilities of 50 × 50
cells is plotted in Figure 11.3.

A number of experiments with larger surveillance regions and more sen-
sor types with different parameters are conducted to compare the perfor-
mance of genetic algorithm (GA) and uniform placement (UP). The average

0 5 10 15 20 25 30 35 40 45 50

0
10

20
30

40
50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Column
Row

Lo
ca

l C
ov

er
ag

e P
ro

ba
bi

lit
ie

s

Figure 11.3 3-D display of the local coverage probabilities for a surveillance region
with 50 × 50 cells based on genetic algorithm.

294 Qishi Wu et al.

detection probabilities computed by both GA and UP for each region size
are plotted as clustered columns in Figure 11.4. In all the simulation cases we
studied, the GA achieved significantly higher probability of detection than
the UP under the given cost bound. Also, these experimental results show
that our GA-based approach is able to scale well with the region size, num-
ber of sensor types, and various constraints on the investment budget.

11.4.2 Sensor data routing

Once deployed, the sensors self-organize to form a wireless sensor network
(WSN) and collect a large amount of data, including enormous redundancy
and outliers. We present several routing mechanisms used to transmit the
collected data to a gateway or base station that is connected to wired com-
puter networks. The dominant problem in WSN is the limited battery power
of each sensor node, and the most energy-consuming task in WSN is the
transmission of sensor data. We propose energy-efficient sensor data rout-
ing methods that reduce data transmission energy to prolong the network
lifetime.

11.4.2.1 Adaptive and energy-efficient sensor data
routing based on spin glass theory

Distributed sensor networks deployed in unstructured environments that do
not support wireless communication infrastructures always feature unpre-
dictable ad hoc network topology, which brings new challenges to tradi-
tional best-effort routing for sensor data integration. We present an adaptive
and energy-efficient routing protocol based on spin glass theory that exploits
global optimization by simple local rules as instantiated by the phenomenon
of ferromagnetism in physics. The Ising system is one of the earliest cellular

Performance Comparison of GA and UP

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

Region Size

A
ve

ra
ge

 D
et

ec
tio

n
Pr

ob
ab

ili
ty

Genetic algorithm
Uniform placement

50×50 100×100 120×120 150×150 200×200 300×300 600×600 750×750 900×900 1000×1000

Figure 11.4 Performance comparison of GA and UP for various region sizes.

Chapter eleven: An integrated intelligent decision support system 295

automata models under investigation. Individuals in the Ising system are
spins, which can be viewed as little magnets. Spins occupy fixed positions in
a one-, two-, or higher dimensional settings, and the polarity is the only vari-
able feature. The probability for a spin to take each of the possible directions
is defined by the Boltzmann probability distribution function.

This proposed routing algorithm aims to find dynamic routes from sen-
sor nodes to a data sink with minimized energy consumption and fair usage
of sensor nodes, achieving scalability and efficiency through localized com-
munications and distributed computations. We employ a cellular automata
modeling tool in the implementation of the routing algorithm and present the
simulation results for an urban warfare scenario of 256 nodes. Results show
that our protocol can support quick route discovery in chaotic urban region
and is highly efficient in terms of energy consumption and load sharing.

In the spin glass model, a potential field characterizing minimal transmis-
sion energy cost to data sink is established by propagating energy computa-
tion from the data sink to its neighboring cells, which in turn serve as energy
computation components for their neighboring cells, and so on. The same
process is repeated until the entire area is fully resolved for energy value.
Generally, there is only one data sink whose energy value is set to be zero,
while all the rest of the cells have infinite initial energy values. Once the
energy value computation starts, every node simultaneously looks around
its adjacent nodes and adds the neighbor’s energy value to the correspond-
ing weight (minimal transmission energy needed for that link), which can be
dynamically updated. The lowest one is chosen as its energy value represent-
ing the lowest energy cost to data sink. This step is similar to the classical
Lee algorithm, which was used to find a shortest path between two termi-
nals if such a path exists. However, in real applications, the potential field as
well as the weights is dynamic, and the potential field is subject to frequent
change due to topological disturbance. Furthermore, a kinetic factor is intro-
duced in our implementation in order to simulate the high error rate in sen-
sor networks and to better inhibit oscillation. Based on the current potential
field, kinetic factor, node failure probabilities, and any possible topological
disturbance, spin direction of each node can be determined as the next hop
along the route to a data sink.

The Cantor tool is a simulator based on the generic automata with interact-
ing agents (GAIA) model. It is capable of modeling dynamic and discrete (in
both time and space) event systems consisting of a large number of interacting
individuals. In our simulation, we assume that each cell is occupied by a sen-
sor node. Neighborhood radius is one by default and is of Moore type. Initial
weights of nodes are set to be identical for simplicity. Primary battery power
is user-specified, and battery is subject to detritions based on the volume of
communication, computation, and transmission as evolution proceeds.

An example of a 16 × 16 grid is used to investigate our spin glass theory.
As shown in Figure 11.5, black blocks stand for wall, white blocks stand for
sensor nodes, green blocks stand for open doors, yellow blocks stand for

296 Qishi Wu et al.

closed doors, red blocks stand for obstacles, and blue blocks stand for sleep
nodes. Environmental disturbances include opening a door, closing a door,
placing new obstacles, and removing obstacles.

In the spin glass-based routing mechanism, we take into consideration
minimal power consumption and democratic policy besides path length to
make the routing protocol more power aware. The temperature variable not
only controls the macro configuration of the system, but also tunes the sys-
tem’s ability to adapt. Low-temperature systems adapt slowly and dampen
oscillations, while high-temperature systems adapt quickly but can become
unstable. Simulation results with cellular automata modeling tool also show
that this routing protocol is distributed in computation, localized in commu-
nication, and highly adaptive to environmental disturbance. Furthermore,
this routing protocol can be easily modified to adapt to a real ad hoc sensor
network scenario. In addition to a flat structure, a hierarchical structure is
also applicable to our model with necessary extension.

Figure 11.5 A spin glass routing example on 16 × 16 2-D grid.

Chapter eleven: An integrated intelligent decision support system 297

11.4.2.2 Data routing in mobile agent-based
distributed sensor networks

In conventional sensor fusion architectures, all the sensor data is sent to a
central location where it is fused. But the transmission of noncritical sensor
data in military distributed sensor network (DSN) deployments increases the
risk of being detected, in addition to consuming the scarce resources such as
battery power and network bandwidth. To meet these new challenges, the
concept of mobile agent–based distributed sensor networks (MADSNs) was pro-
posed by Qi et al. in [29], wherein a mobile agent selectively visits the sensors
and incrementally fuses the appropriate measurement data. We consider the
problem of computing a route for a mobile agent in a distributed sensor net-
work. The order of nodes visited along the route has a significant impact on
the quality and cost of fused data, which, in turn, impacts the main objective
of the sensor network, such as target classification or tracking. We present
a simplified analytical model for a distributed sensor network and formu-
late the route computation problem in terms of maximizing an objective
function, which is directly proportional to the received signal strength and
inversely proportional to the path loss and energy consumption. This prob-
lem has been shown to be NP-complete [41], and we present here a genetic
algorithm to compute an approximate solution by suitably employing a two-
level encoding scheme and genetic operators tailored to the objective func-
tion. We present simulation results for networks with different node sizes
and sensor distributions, which demonstrate the superior performance of
our algorithm over two existing heuristics, namely, local closest first (LCF)
and global closest first (GCF) methods.

Mobile agent routing algorithms can be classified as dynamic or static
routing according to the place where routing decisions are made. A dynamic
method determines the route locally on the fly at each hop of the migration of
a mobile agent among sensor nodes, while a static method uses centralized
routing, which computes the route at the processing element (PE) node in
advance of mobile agent migration. For a sensor network application at hand,
one has to judiciously choose between the dynamic and static methods. For
example, it might be sufficient to use a static routing for target classification,
but a target tracking task might require a dynamic routing to follow a mov-
ing target.

The routing objective is to find a path for a mobile agent that satisfies
the desired detection accuracy, while minimizing the energy consumption
and path loss. The objective function for the mobile agent routing problem is
based on three aspects of a routing path P: energy consumption EC(P), path
loss PL(P), and detected signal energy SE(P) as follows:

O P SE P

EC P PL P
() ()

() ()
= +

1 1

298 Qishi Wu et al.

wherein the terms SE(P), EC(P), and PL(P) are assumed to be “normalized” to
appropriately reflect the contribution by various loss terms. To facilitate the
design of a genetic algorithm, we define a fitness function based on the above
objective function as follows:

 f P O P g() ()= +

where g is the penalty function for overrunning the constraint and is
defined by:

 g
SE P E

SE P E E SE P E
=

≥
⋅ − <

0, ()

(())/ ()δ

where E is the desired detection accuracy or signal energy level, and δ is a
properly selected penalty coefficient.

We propose an event-driven adaptive method to implement a semidy-
namic routing strategy based on a two-level genetic algorithm. We convert
the problem parameters into the individuals made up of genes in the genetic
domain and employ a two-level encoding to adapt the genetic algorithm to
the mobile agent routing problem in MADSN. The first level is a numerical
encoding of the sensor ID label sequence L in the order of sensor nodes being
visited by mobile agent. This sequence consists of a complete set of sensor
labels because it takes part in the production of a new generation of solu-
tions through the genetic operations. The second level is a binary encoding
of the visit status sequence V in the same visiting order, where ‘1’ indicates
‘visited’ and ’0’ indicates ‘unvisited.’ If a sensor is inactive, its corresponding
bit remains ‘0’ until it is reactivated and visited. Masking the first level of
numerical sensor label sequence L by the second level of binary visit status
sequence V results in a candidate path P for mobile agent. These two levels
of sequences are arranged in the same visiting order for the purpose of con-
venient manipulations of visited/unvisited and active/inactive status in the
implementation of the genetic algorithm. The number of hops H in a path P
can be easily calculated from the second level of binary sequence as follows:

 H V i
V i S

i

N
i=

=

=
∑

0

1
[],

[] , sensor is active and visiteed
sensor is inactive or unvisitedV i Si[] ,=

 0

The genetic operators are similar to those used in the conventional solu-
tion to the Traveling Salesman Problem with certain modifications made on the
selection, crossover, mutation, inversion operators to adapt the algorithm to
the routing problem under study.

The search result visualized in Figure 11.6 shows that the GA has suc-
cessfully discovered a clean route that goes through every node within the

Chapter eleven: An integrated intelligent decision support system 299

sensing zone of the target while avoiding the nodes in sleep state. The global
random optimization strategy makes GA capable of exploring any potential
sensing zones and visiting nodes in the target neighborhoods with the high-
est priority for an optimal detection performance in addition to preserving an
energy-saving route. This salient feature of the GA-based routing method is
evident in the search results for all experimental sensor networks we tested.

In order to make a straightforward performance comparison between GA,
LCF, and GCF, we plot the simulation results of node sizes vs. objective values
in Figure 11.7, which shows that the GA has a superior overall performance

Figure 11.6 Visualization of the search results computed by GA for an MADSN
with 200 nodes.

Node Size vs. Objective Value

0

1

2

3

4

5

Node Size
0 200 400 600 800 1000 1200 1400 1600 1800

O
bj

ec
tiv

e V
al

ue

GA
LCF
GCF

Figure 11.7 Node sizes vs. objective values for GA, LCF, and GCF.

300 Qishi Wu et al.

over the other two algorithms in terms of the objective function defined in the
implementation.

11.4.2.3 Data routing in multi-sink sensor networks
In traditional single-sink sensor networks where the routing algorithms
mainly focus on the nearest path or minimum hops, sensors near the sink or
on the critical paths consume energy much faster than others, causing unbal-
anced energy consumption. The failure of a single-sink node due to energy
depletion may cause the breakdown of the entire sensor network. Through
the analysis of the disadvantages of single-sink sensor networks, we propose
the system architecture of multi-sink sensor networks and a new routing
algorithm, priority-based routing (PBR), to balance the energy consumption
of the sensor nodes in multi-sink sensor networks. Experiment results show
PBR has better performances than traditional methods and prolongs the life-
time of sensor networks.

11.4.2.3.1 Minimum energy cost routing algorithm. Suppose that the
sensor node vi is the data source and there are n sink nodes deployed in the
sensor network. The total energy consumption from vi to sink vk is cost(vi , vk).
The minimum communication cost routing algorithm is described as

 min (,)
k

i kcost v v()

11.4.2.3.2 Energy level–based routing algorithm (ELBR). ELBR is a
routing algorithm based on the energy levels of sensor nodes. We first calcu-
late the energy level of the path and then choose the path with the maximum
energy level to transmit data. Here, energy level is defined as the number
of times a sensor node can transmit data to its neighbors under the current
remaining energy.

 L E k di m residual i j
a

, (,)()= ∗ + τ

where d(i, j) is the distance between two neighboring sensor nodes vi and vj ,
Li,m is the energy level between vi and vm , m represents the sink node, Eresidual
is the residual energy of a sensor node, k is power dissipation parameter of
transmission circuit, τ is the total energy consumption for sampling, compu-
tation and receiving of sensor nodes, and a is a power dissipation exponent,
whose value varies according to the environment.

According to the energy levels of sensor nodes, we calculate the energy
level of the path and choose the path with the maximum energy level to
transmit data, i.e., max() max(min()), ,

n
i k

n j
j kS L= , where S is the energy level of

a routing path.

Chapter eleven: An integrated intelligent decision support system 301

11.4.2.3.3 Priority-based routing algorithm (PBR). PBR takes both
the energy level and the energy cost of a routing path into consideration, so
the energy consumption is more balanced, resulting in a prolonged network
lifetime. Assume that node i is the data source, and there are k sink nodes in
the sensor network. The energy consumption of data transmission from i to
sink j is cost(vi , vj); the energy level of the path is s(i, j). The maximum energy
consumption from node i to all the sink nodes is max((,))cost v v

n i k . After gen-
eralization, we have cost v v cost v vi j n i k(,)/max((,)). The PBR can be presented as
max()

n i kp , , p cost v v cost v v si j n i k i j i j, ,(max((,))/ (,)) (= ×α))β, where j ∈ vsink , and α and
β are influential exponents. When α = 1, β = 0, p cost v v cost v vi j k i k i j, = , / ,max(()) (),
 and the value of max((,))cost v v

k i k is invariant in the same sensor network,
PBR is essentially the minimum energy cost routing algorithm. When α = 0,
β = 1, pi, j = si, j , PBR is essentially the energy level-based routing algorithm.

11.4.3 Network mapping for optimal computing
pipeline configuration

A number of large-scale computation-intensive sensor network applications
require efficient executions of computing tasks that consist of a sequence
of linearly arranged modules, also referred to as subtasks or stages in cer-
tain contexts. These modules form a so-called computing pipeline between
the data source collected in sensor networks and an end user, as shown in
Figure 11.8.

Due to the disparate nature of data sources and the intrinsic heteroge-
neity of network nodes, communication links, and application computing
tasks, deploying component modules on different sets of computing nodes
can result in substantial performance variations. The pipeline mapping
problems considered in our work are to find an optimal mapping scheme
that maps the computing modules onto a set of strategically selected nodes
to (1) minimize end-to-end delay for interactive applications where a single
dataset is processed sequentially along a computing pipeline and (2) maxi-
mize frame rate for streaming applications where multiple datasets are fed
into a computing pipeline in a batch-processing mode to sustain continuous
data flow.

End User

Data Processing
Module n–1

Data Processing
Module i

Data Processing
Module 2

Data Processing
Module 1

Data Source

Data Processing
Module n

Figure 11.8 A general application computing pipeline consisting of n modules.

302 Qishi Wu et al.

11.4.3.1 Cost models of pipeline and network components
We construct an analytical cost model for each pipeline and network compo-
nent to facilitate the mathematical formulations of the mapping problems. As
shown in Figure 11.9, the computational complexity of a computing module
Mi is denoted as ci , which, together with the incoming data size mi–1 , deter-
mines the number of CPU cycles needed to complete the subtask defined
in the module. The output data of size mi is sent to its immediate successor
node in the pipeline for further processing. We use a normalized quantity
pi to represent the overall computing power of a network node vi. The com-
munication link between network nodes vi and vj is denoted as Li, j , which is
characterized by two attributes, namely bandwidth bi, j and minimum link
delay di, j . We estimate the computing time of module Mi running on network
node vj to be T M vcomputing i j

m c
p
i i

j
(,) = −1 and the transfer time of message size m

over a communication link Li, j to be T m L dtransport i j
m

b i ji j
(,), ,,

= + .

11.4.3.2 Mapping problem formulation
We consider an underlying transport network that consists of k geographi-
cally distributed computing nodes denoted by v1, v2, . . . , vk–1, vk. Node
vi, i = 1, 2, . . . , k – 1, k has a normalized computing power pi and is connected
to its neighbor node vj, j = 1, 2, . . . , k – 1, k, j ≠ i with a network link Li, j of band-
width bi, j and minimum link delay di, j. The transport network is represented
by a graph G = (V, E),|V| = k, where V denotes the set of network nodes (verti-
ces) and E denotes the set of communication links (edges). Note that the trans-
port network may or may not be a complete graph, depending on whether
the node deployment environment is the Internet or a dedicated network. As
shown in Figure 11.10, the general computing pipeline consists of n sequential
modules, M1, M2, . . . , Mu–1, Mu, . . . , Mv–1, , Mw , . . . , Mx–1, Mx, . . . , Mn where
M1 is a data source and Mn is an end user. Module Mj , j = 2, . . . , n performs a
computing module of complexity cj on data of size mj–1 received from its pre-
decessor module Mj–1 and generates and sends data of size mj to its successor
module Mj+1.

The general mapping scheme is to decompose the pipeline into q groups
of modules, denoted by g1, g2, . . . , gq–1, gq , and map them onto a selected path

Mi
mi−1 mi vi

pi

vj
Li,j

bi,j di,j
ci

pj

Figure 11.9 Cost models for computing modules, network nodes, and communica-
tion links.

Chapter eleven: An integrated intelligent decision support system 303

P of q nodes from a source node vs to a destination node vd in the transport
network, where q ∈ [1, min(k, n)]and path P consists of a sequence of not nec-
essarily distinct nodes v v v v v vP s P P q P q d[] [] [] [], , , ,1 2 1= =−… . Note that the path
reduces to a single computer when q = 1. We define the objective functions
for two different types of applications as follows:

 1. For interactive applications, we achieve the fastest system response by
minimizing the total computing and transport delay of the pipeline
from the source node to the destination node:

 T Path P of q nodes T Ttotal computing trans() = + pport

i

q

g

i

q

L

i

q

T T

p

i P i P i
= +

=

= =

−

=

∑ ∑

∑

+

1 1

1

1

1

1

[], []

PP i j g j

j j

i

q

i

i

c m
m g

[] ,

()
()

∈ ≥
−

=

−

∑ ∑

+
2

1

1

1

bbP i P i[], []+

1

 (11.7)

 2. For streaming applications, we identify and minimize the time incurred
on a bottleneck link or node to maximize the frame rate to produce the
smoothest data flow, which is defined as:

vd

cncxcx–1 cv–1 cu–1 cwcuc1

vs
vP(2)ps

gqgq–1g2g1

MnMxMx–1Mv–1Mu–1M1 MwMu
mx–1mv–1mu–1

pd
vp(q–1)

pP(q–1)pP(2)

bP(2),P(3)
bp(q–1),d

bs, P(2)

Figure 11.10 Mathematical formulation of the general computing pipeline map-
ping problems.

304 Qishi Wu et al.

 T Path P of q nodesbottleneck
Path P of q nodes

i

() =
=1,, , ,

[]max

(),

(

2 1… −q

computing i

transport P i

T g

T L ,, []),

()
P i

computing q

Path P of q

T g
+

=

1

nnodes
i q

P i j g and j

j jp
c m

i

= … −

∈ ≥
−∑

1 2 1

2

1

, , ,

[]

max

(11

1

2

1

),

()
,

(

[], []

[]

m g
b

p
c m

i

P i P i

P q j g and j

j

q

+

∈ ≥
∑ jj−

1)

 (11.8)

To optimize the network performance of computing pipelines in dis-
tributed network environments, we propose a polynomial-time mapping
approach, optimal linear pipeline configuration (OLPC), based on dynamic
programming, to strategically group the modules and map them onto vari-
ous network nodes for minimum end-to-end delay or maximum frame rate.

11.4.3.3 Optimal linear pipeline configuration (OLPC)
We present two OLPC algorithms based on dynamic programming that
solve the mapping problems for minimal end-to-end delay and maximum
frame rate, respectively.

Let T j(vi) denote the minimal total delay, with the first j modules mapped
to a path from the source node vs to node vi under consideration in the com-
puter network. Then, we have the following recursion leading to T n(vd):

 T v
T v c m p

j
i

j n v V

j
i j j v

u
i

i

() min
() ,

,= ∈

−
−

=
+

2

1
1

to
∈∈

−
− −+ +

adj v

j
j j v j u v

i
i i

T u c m p m b
()

,min ()1
1 1

 (11.9)

with the base conditions computed as:

v V v v

i
v v v v v

i i s

i s i sT v
c m p m b e

∈ ≠
=

+ ∀

,and

2 2 1 1
()

,, , ii
E

otherwise

∈

∞

 ,
 (11.10)

on the first column and

 T v c m p t nt
s

i

t

i i vs
() (), , , ,= =

=
−∑

1

1 1 2 … (11.11)

Chapter eleven: An integrated intelligent decision support system 305

on the first row in the two-dimensional table as shown in Figure 11.11. Every
cell T j(vi) in the table shown in Figure 11.11 represents an optimal mapping
solution that maps the first j modules in the pipeline to a path between the
source node vs and node vi in the network and is calculated from the inter-
mediate mapping results stored in the left column, i.e., T j(vi) is calculated
from T j–1. The complexity of this algorithm is O(n × |E|), where n denotes the
number of modules in the linear computing pipeline, and |E| is the number
of edges in the distributed network.

The maximum frame rate that a computing pipeline can achieve is lim-
ited by the bottleneck unit, i.e., the slowest transport link or computing node
along the entire pipeline [46]. Let 1/T j(vi) denote the maximal frame rate,
with the first j modules mapped to a path from source node vs to node vi in an
arbitrary computer network. We have following recursion leading to T n(vd)
when nodes are not reused in the mapping:

 T v T uj
i

j n v V u adj v

j

i i

() min max (),
, ()= ∈ ∈

−=
2

1

to
cc m p m bj j v j u vi i−

1 , , (11.12)

with the base conditions computed as:

the
i-th

Node
vi

(total k
nodes)

Mapping the First j Modules (M1,…, Mj) to a Network Path from vs to vi

vs

v2

v3

v4
.
.
.

...... y n – 1 n

vp

T n(vs)

T x(v3)

T n–1(v4)

T n–1(vd) T n(vd)

T 3(vs)

T 3(v2)

T 2(v2)

T 4(v0) T 5(v0)

T y(vp)

T 2(vs)T 1(vs)

u1

u1 u2

u2 u3

vd

v0
.
.
.

.

.

.

x1 2 3 4 5

Figure 11.11 Construction of 2-D matrix in dynamic programming for minimum
end-to-end delay.

306 Qishi Wu et al.

v V v v

i
v v v

i i s

i s iT v
c m p m b

∈ ≠
=

,

,
()

max ,

and

2 2 1 1
 ∀ ∈

∞

,

,

,e E

otherwise

v vs i (11.13)

on the first column in the table.
The computing steps of the maximum frame rate are similar to those of

the minimum total delay. The main difference is that we do not cumulate the
minimum delay of each mapping subproblem. Instead, we identify the bot-
tleneck unit and calculate its maximum delay in each mapping subproblem.

11.4.4 Sensor data fusion

We propose a binary decision fusion rule that reaches a global decision in the
presence of a target by integrating local decisions made by multiple sensors.
Without requiring a priori probability of target presence, the fusion thresh-
old bounds derived using Chebyshev’s inequality ensure a higher hit rate
and lower false alarm rate compared to the weighted averages of individual
sensors. The Monte Carlo–based simulation results show that the proposed
approach significantly improves target detection performance.

11.4.4.1 Problem formulation
We consider N sensor nodes deployed in a three-dimensional region of inter-
est (ROI), centering around a target within radius R. At sensor i, the noise ni
in a sensor measurement is independently and identically distributed (iid)
according to the normal distribution.

 ni ∼ℵ(,)0 1 (11.14)

The sensor measurements are subjective to an additive term due to such
noise. Each sensor i makes a binary local decision as:

H r w n

H r n

i i i

i i

1

0

:

:

= +

=
 (11.15)

where ri is the actual sensor reading, wi is the ideal sensor measurement, and
ni is the noise term. We consider an isotropic signal attenuation power model
defined by:

 w
w

d
i

i
n

=
+

0

1 β
 (11.16)

where w0 is the original signal power emitted from the target located at point
(x0 , y0 , z0), β is a system constant, and di represents the Cartesian distance
between the target and the sensor node, which is defined in Equation 11.17.

Chapter eleven: An integrated intelligent decision support system 307

Parameter n is the signal attenuation exponent, typically ranging from 2 to 3,
and the distance is defined as:

 d x x y y z zi i i i= − + − + −() () ()0
2

0
2

0
2 (11.17)

This model describes a three-dimensional unobstructed region moni-
tored by a set of sensors that detect the signal emitted from a target within
the monitoring area.

Suppose that every sensor node employs the same threshold τ for decision
making regardless of its distance to the target. The expected signal strength
wi for sensor i can be computed from Equation 11.16 according to its distance
to the target. Thus, the hit rate phi

 and false alarm rate pfi
 for sensor i can be

derived as follows:

 p e dxhi

x wi

=
∞

∫
− −

τ π
1

2

2

2
()

 (11.18)

 p e dxfi

x

=
∞

∫
−

τ π
1

2

2

2 (11.19)

A simplified homogeneous system ignores the impact of various distances
to the target on sensor detection capabilities so that every sensor has the
same hit rate and false alarm rate.

11.4.4.2 Threshold-OR fusion method
Each sensor i makes an independent binary decision Si as either 0 or 1. The
fusion center collects local decisions and computes S as:

 S S
i

N

i=
=
∑

1

 (11.20)

which is then compared with a threshold T to make a final decision. Under
the assumption that sensor measurements are statistically independent
under H1 , the mean and variance of S are given as follows when a target is
present:

E S H p

Var S H p p

i

N

h

i

N

h h

i

i i

()

() ()

| = ,

| = −

=

=

∑

∑

1

1

1

1

1

 (11.21)

308 Qishi Wu et al.

Similarly, under the assumption that sensor measurements are statisti-
cally independent under H0 , the mean and variance of S when a target is
absent can be defined.

The threshold value T is critical to the system performance. Let Ph and Pf
denote the hit rate and false alarm rate of the fused system. We give reason-
able value bounds for T as

i

N

f

i

N

hp T p
i i

= =
∑ ∑< <

1 1

.

The weighted averages of phi
 and pfi

, i = 1, 2, . . . , N are defined as follows:

i

N
h

j

N

h

h
i

N

h

i

N

h

p

p

p

p

p

i

j

i

i

i

=

=

=

=

∑
∑

∑
∑

=
1

1

1

2

1

 (11.22)

i

N
f

j

N

f

f
i

N

f f

i

p

p

p

p p
i

j

i

i i

=

=

=

=

∑
∑

∑−

−

=
−

1

1

1
1

1

1

()

()

11

1
N

fp
i∑ −()

 (11.23)

We desire better detection performance of the fused system than the cor-
responding weighted averages in terms of higher hit rate and lower false
alarm rate such that:

 P

p

p
h

i

N

h

i

N

h

i

i

> =

=

∑
∑

1

2

1

 (11.24)

 P

p p

p
f

i

N

f f

i

N

f

i i

i

<
−

−

=

=

∑
∑
1

1

1

1

()

()

 (11.25)

Chapter eleven: An integrated intelligent decision support system 309

We first consider a lower bound of the hit rate of the fused system:

 P P S T H P S p p T Hh

i

N

h

i

N

hi i
= ≥ ≥ − ≤ −

= =
∑ ∑{ | } {| | ()|1

1 1
1}}

()

()

≥ −

= −
−

−

=

=

∑
∑

1

1

1

2

2

1

1

2

σ
k

p p

p T

i

N

i

N

hi hi

hi

 (11.26)

where we applied Chebyshev’s inequality in the third step as shown in Fig-

ure 11.12 and

 k p T
i

N

hi
= −

=
∑()

1

.

Now the condition in Equation 11.24 can be ensured by the following suf-

ficient condition.

T S

N N

i = 1i = 1
≤P

P {S ≥ T | H1}

E(S | H1) =

Probability Density p(S)

– T H1phi phi

N N

i = 1i = 1
+ – Tphi phi

N

i = 1
phi

S –

Figure 11.12 Application of Chebyshev’s inequality in calculating the lower bound
of the system hit rate.

310 Qishi Wu et al.

 1

1
1

1

2

1

2

1

−
−

−

≥=

=

=

=

∑
∑

∑
i

N

i

N
i

N

i

p p

p T

p
hi hi

hi

hi
()

()
NN

p
hi∑

 (11.27)

Following that, an upper bound of T can be derived from Equation 11.27
as follows:

 T p p
i

N

i

N

hi hi
≤ −

= =
∑ ∑

1 1

 (11.28)

Similarly, for the false alarm rate, we carry out a similar procedure to com-
pute the lower bound from Equation 11.29 to Equation 11.33. Again, Cheby-
shev inequality is applied in the second step in Equation 11.31.

 P P S T P S Tf = ≥ = − <{ | } { | }H H0 01 (11.29)

 P S T P S p T p
i

N

f

i

N

fi i
{ | } {| | ()| }< ≥ − ≤ −

= =
∑ ∑H H0

1 1

0 (11.30)

 P P S p T p

p

f

i

N

f

i

N

f
i

N

i i
≤ − − ≤ − ≤

= =

=∑ ∑
∑

1
1 1

0
1{| | ()| }H

ff f

i

N

f

i i

i

p

T p

()

()

1

1

2

−

−
=
∑

 (11.31)

Now we consider the condition that ensures the false alarm probability of
fuser is smaller than that of weighted average given by:

 i

N

f f

i

N

f

i

N

p p

T p

p p
i i

i

fi f

=

=

=
∑

∑
∑−

−

≤
−

1

1

2

1

1 1()

()

()
ii

fi
i

N

p
=
∑ −

1

1()

 (11.32)

 T p p
i

N

i

N

fi fi
≥ + −

= =
∑ ∑

1 1

1() (11.33)

Therefore, we define the range of T using the upper bound in Equation
11.28 and lower bound in Equation 11.33 as follows:

Chapter eleven: An integrated intelligent decision support system 311

i

N

i

N

i

N

i

N

p p p p
fi fi hi hi

= = = =
∑ ∑ ∑ ∑+ − −

1 1 1 1

1() ,

 (11.34)

To ensure that the upper bound is larger than the lower bound, we have
the following restrictions on individual hit rates, individual false alarm rates,
and the number of sensor nodes, for the heterogeneous and homogeneous
systems in Equation 11.35 and Equation 11.36, respectively:

i

N

i

N

i

N

i

N

p p p p
fi fi hi hi

= = = =
∑ ∑ ∑ ∑+ − − + ≤

1 1 1 1

1 0() (11.35)

 p p
p p

N
h f

h f− ≥
+ −1

 (11.36)

11.4.4.3 Simulation results
Our simulation examples are based on 100,000 runs for better probability
estimation with large sampling size. The receiver operative characteristic
(ROC) curve, a plot of the hit rate against the false alarm rate for the differ-
ent possible thresholds, can be obtained by our simulation. There is tradeoff
between sensitivity and specificity, namely any increase in sensitivity as hit
rate will be accompanied by an increase in nonspecificity as false alarm rate.
The closer the curve follows the left-hand border and then the top border of
the ROC space, the more accurate the system is. The closer the curve comes
to the 45-degree diagonal of the ROC space, the less accurate the test.

In a homogenous system, all sensor nodes assume the same hit rate and
false alarm rate. In the first simulation test, we set sensor hit rate to be 0.65
and sensor false alarm rate to be 0.2. In Figure 11.13, four system ROC curves
with sensor node numbers going from 15 to 25 are plotted. The desirable
segment on the ROC curve is located by restricting thresholds selection. Due
to the discrete nature of our binary decision system, we identify the selected
ROC segment as individual enlarged markers. From Figure 11.13, we observe
that all selected points locate in the top left corner of ROC space and bear hit
rate and false alarm rate that are greatly superior to that of a single sensor
node. As the number of sensor nodes increases, our system performance is
improved due to ample resources.

In a heterogeneous system, from Equation 11.18 and Equation 11.19, we
know that sensors have the same false alarm rate and different hit rate due
to various distance to the target. We assume the known hit rate and false
alarm rate for sensor with zero distance to the target to be ph and pf , respec-
tively. Threshold τ can be calculated from Equation 11.19, since false alarm
rate is known. Then, original signal power S0 can be computed from Equa-

312 Qishi Wu et al.

tion 11.18. Si can be derived from Equation 11.16, and consequently, phi
 can be

computed according to Equation 11.18. This heterogeneous system serves as
a good approximation model for real scenario. Our approach can also handle
systems with heterogeneous false alarm rates if needed. The original hit rate
is set to be 0.75, and the false alarm rate is set to be 0.2. Deployment radius
goes from 1 to 3 for result comparison. Table 11.1 gives the simulation results
under different radius. The increased radius lowers the weighted average
hit rate and negatively affects the system performance in terms of system hit
rate, system false alarm rate, and system thresholds. It further demonstrates
the fact that sensors should be deployed as close to potential targets as pos-
sible. From Figure 11.14, our fusion system achieves a much higher hit rate

Pf: False Alarm Rate
0 0.01

0.85

0.9

0.95

1

0.02 0.03 0.04 0.05

Radius 1
Radius 2
Radius 3

Ph
: H

it
Ra

te

Figure 11.14 Heterogeneous ROC curve with different deployment radius.

0.05

N = 15
N = 18
N = 21
N = 25

0.040.030.02
Pf: False Alarm Rate

0.010
0.85

0.9Ph
: H

it
Ra

te 0.95

1

Figure 11.13 Homogeneous ROC curve with different sensor node number.

Chapter eleven: An integrated intelligent decision support system 313

close to 0.95 and lower false alarm rate below 0.02 as comparison to weighted
hit rate and false alarm rate of 0.67 and 0.2, respectively. Figure 11.15 demon-
strates the usage of normal distribution function in computing individual
sensor hit rate and false alarm rate.

11.5 Conclusion
In recent years, the rapid advances in sensing and computing technologies
have generated a great deal of interest in the development of new computa-
tional structures and strategies for large-scale computation-intensive appli-
cations based on distributed sensor networks. The success of such large-scale
applications requires the integration of solutions to the problems of sensor
deployment, data routing, distributed data processing, and information
fusion in both sensor and computer networks. We proposed a general frame-
work IDSS-SC for the design of an intelligent decision support system that
integrates sensing and computing power in support of various sensor net-
work applications.

The spatial structure of IDSS-SC is composed of three major parts: wireless
sensor network for data collection, wired computer network for data process-
ing, and command control center for intelligent decision making. For each
subsystem of IDSS-SC, we analytically formulated the problem, presented

X-Axis

Y-
A

xi
s

0
Threshold S0si

Heterogenous
Hit RateHomogenous

False Alarm Rate

Figure 11.15 Normal distribution based hit rate and false alarm rate calculation.

Table 11.1 Numeric Results with Different Deployment Radius

N = 25, pj = 0.2, ph = 0.75 Tlower Tupper Wph

Radius = 1 10 12 0.67
Radius = 2 10 11 0.64
Radius = 3 10 10 0.58

314 Qishi Wu et al.

a technical solution, and evaluated the solution with either experimental or
simulation data. These problems and their corresponding solutions demon-
strate the wide scope of the present research efforts in this area. The effective-
ness of a multisensor system depends on the individual solutions to various
problems in sensor model construction, sensor deployment scheme, sensor
network architecture, information translation cost, and network fault toler-
ance. So far, very little basic research has been done on a general framework
needed to provide a systematic approach to the design of distributed sensor
and computer network systems.

IDSS-SC aims at integrating the physical world and the cyberspace into a
global self-organizing information space through the emerging sensor and
computer science technologies. As the Internet has changed the way people
communicate in the virtual world, IDSS-SC extends this vision to the physi-
cal world, thus enabling novel ways for humans to interact with environ-
ments and facilitating interactions among entities of the physical world and
finally making intelligent decisions.

Acknowledgments
This research is sponsored by National Science Foundation under Grant
No. CNS-0721980 and Oak Ridge National Laboratory, U.S. Department of
Energy, under Contract No. PO 4000056349 with University of Memphis.

References
 1. Bashir, A. F. and V. Susarla and K. Vairavan. 1975. A statistical study of the

performance of a task scheduling algorithm. IEEE Transactions on Computer,
32(12):774–777.

 2. Agarwalla, B., N. Ahmed, D. Hilley, and U. Ramachandran. 2006. Streamline: a
scheduling heuristic for streaming application on the grid. In Thirteenth Multi-
media Computing and Networking Conference, San Jose, CA.

 3. Bulusu, N. and D. Estrin. 2002. Scalable ad hoc deployable RF-based localiza-
tion. In Proceedings of the Grace Hopper Celebration of Women in Computing Confer-
ence 2002, Vancouver, British Columbia, Canada.

 4. Buyya, R. 2002. Economic-based Distributed Resource Management and Scheduling
for Grid Computing. Ph.D. thesis, Monash University, Melbourne, Australia.

 5. Buyya, R., D. Abramson, and J. Giddy. 2000. Nimrod/G: an architecture for a
resource management and scheduling system in a global computational grid.
In High Performance Computing, ASIA. 4th International Conference on High
Performance Computing in Asia-Pacific Region, Beijing, China, IEEE Computer
Society Press.

 6. Cao, J., S. A. Jarvis, S. Saini, and G. R. Nudd. 2003. Gridflow: workflow man-
agement for grid computing. In The 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, pages 198–205.

 7. Chan, H. and A. Perrig. 2003. Security and privacy in sensor networks. Com-
puter, 36(10):103–105.

Chapter eleven: An integrated intelligent decision support system 315

 8. Chan, H., A. Perrig, and D. Song. 2003. Random key predistribution schemes
for sensor networks. In Proc. of the IEEE Symposium on Security and Privacy, pp.
197–213.

 9. Chaudhary, V. and J. K. Aggarwal. 1993. A generalized scheme for map-
ping parallel algorithms. IEEE Transactions on Parallel and Distributed Systems,
4(3):328–346.

 10. Chen, L. and G. Agrawal. 2004. Resource allocation in a middleware for streaming
data. In The 2nd Workshop on Middleware for Grid Computing, Toronto, Canada.

 11. Chen, L. and G. Agrawal. 2006. Supporting self-adaptation in streaming data
mining applications. In IEEE International Parallel and Distributed Processing
Symposium.

 12. Deng, J., R. Han, and S. Mishra. 2003. Security support for in-network process-
ing in wireless sensor networks. In Proc. of the First ACM Workshop on the Secu-
rity of Ad Hoc and Sensor Networks.

 13. Douceur, J. R. 2002. The sybil attack. In Proc. of IPTPS ‘02, Cambridge, MA.
 14. Du, W. et al. 2004. A key management scheme for wireless sensor networks

using deployment knowledge. In INFOCOM 2004. Twenty-Third Annual Joint
Conference of the IEEE Computer and Communications Societies.

 15. Du, W., J. Deng, Y. Han, and P. Varshney. 2003. A pairwise key pre-distribution
scheme for wireless sensor networks. In Proc. of the 10th ACM Conference on
Computer and Communications Security (CCS’03), pp. 42–51.

 16. Eschenauer, L. and V. D. Gligor. 2002. A key management scheme for distrib-
uted sensor networks. In Proc. of the 9th ACM Conference on Computer and Com-
munication Security, pp. 41–47.

 17. Ganesan, D., R. Cristescu, and B. Beferull-Lozano. 2006. Power-efficient sensor
placement and transmission structure for data gathering under distortion con-
straints. ACM Transactions on Sensor Networks 2(2):155–181.

 18. Gerasoulis, A. and T. Yang. 1992. A comparison of clustering heuristics for
scheduling DAG’s on multiprocessors. Journal of Parallel and Distributed Comput-
ing, 16(4):276–291.

 19. Guibas, L., D. Lin, J. C. Latombe, S. LaValle, and R. Motwani. 2000. Visibility-
based pursuit evasion in a polygonal environment. International Journal of Com-
putational Geometry Applications, 9(5): 471–494.

 20. Heinzelman, W., A. Chandrakasan, and H. Balakrishnan. 2000. Energy-effi-
cient communication protocols for wireless microsensor networks. In Proc. of
33rd Hawaiian Int’l Conf. on System Science.

 21. Intanagonwiwat, C., R. Govindan, and D. Estrin. 2000. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In Proceed-
ings of the Sixth Annual International Conference on Mobile Computing and Network-
ing (MobiCOM ‘00), August 2000, Boston, MA.

 22. Karlof, C., N. Sastry, and D. Wagner. 2004. Tinysec: a link layer security archi-
tecture for wireless sensor networks. In Proc. of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys 2004).

 23. Kim, S. J. and J. C. Browne. 1988. A general approach to mapping of parallel
computation upon multiprocessors architectures. In Proceedings of International
Conference on Parallel Processing, pp. 1–8.

 24. Kwok, Y.-K. and I. Ahmad. 1996. Dynamic critical-path scheduling: an effec-
tive technique for allocating task graph to multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 7(5):506–521.

316 Qishi Wu et al.

 25. Liu, D. and P. Ning. 2003. Establishing pairwise keys in distributed sensor net-
works. In Proc. of the 10th ACM Conference on Computer and Communications Secu-
rity (CCS ’03), pp. 52–61.

 26. Martinez, S. and F. Bullo. 2006. Optimal sensor placement and motion coordi-
nation for target tracking. Automatica, 42(4):661–668.

 27. Meguerdichian, S., F. Koushanfar, M. Potkonjak, and M. Srivastava. 2001. Cov-
erage problems in wireless ad hoc sensor networks. In Proc. of IEEE INFOCOM
2001, Anchorage, AK.

 28. Perrig, A. et al. 2001. Spins: security protocols for sensor networks. In Proceed-
ings of Seventh Annual International Conference on Mobile Computing and Networks
MOBICOM 2001.

 29. Qi, H., S. S. Iyengar, and K. Chakrabarty. 2001. Multi-resolution data integra-
tion using mobile agents in distributed sensor networks. In IEEE Trans. Systems,
Man, and Cybernetics Part C: Applications and Rev. 31:383–391.

 30. Reibman, A. R. and L. W. Nolte. 1987. Design and performance comparison
of distributed detection networks. IEEE Trans. Aerosp. Electron. Syst., AES
(23):789–797.

 31. Reibman, A. R. and L. W. Nolte. 1987. Optimal detection and performance of
distributed sensor systems. IEEE Trans. Aerosp. Electron. Syst., AES (23):24–30.

 32. Royer, E. M. and C.-K. Toth. 1999. A review of current routing protocols for ad
hoc mobile wireless networks. IEEE Personal Communication, April 1999.

 33. Sadjadi, F. A. 1986. Hypothesis testing in a distributed environment. IEEE Trans.
Aerosp. Electron. Syst., AES (22):134–137.

 34. Shirazi, B., M. Wang, and G. Pathak. 1990. Analysis and evaluation of heuris-
tic methods for static scheduling. Journal of Parallel and Distributed Computing,
(10):222–232.

 35. Tenney, R. R. and N. R. Sandell. 1981. Detection with distributed sensors. IEEE
Trans. Aerosp. Electron. Syst., AES (17):501–510.

 36. Thomopoulos, F. A., R. Viswanathan, and D. C. Bougooulias. 1987. Optimal
decision fusion in multiple sensor systems. IEEE Trans. Aerosp. Electron. Syst.,
AES (23):644–653.

 37. Tsitsiklis, J. 1993. Decentralized detection. In Advances in Statistical Signal Process-
ing, vol. 2, eds. H. V. Poor, and J. B. Thomas. JAI Press, Greenwich, CN, pp.
297–344.

 38. Varshney, P. 1997. Distributed Detection and Data Fusion. Springer-Verlag, New York.
 39. Wang, G., G. Cao, and T. L. Porta. 2004. Movement-assisted sensor deployment.

In Proc. IEEE INFOCOM.
 40. Wood, A. D. and J. A. Stankovic. 2002. Denial of service in sensor networks.

Computer, 35(10):54–62.
 41. Wu, Q., S. S. Iyengar, N. S. V. Rao, J. Barhen, V. K. Vaishnavi, H. Qi, and K.

Chakrabarty. 2004. On computing mobile agent routes for data fusion in dis-
tributed sensor networks. IEEE Transactions on Knowledge and Data Engineering,
16(6):740–753.

 42. Wu, Q., N. S. V. Rao, X. Du, S. S. Iyengar, and V. K. Vaishnavi. 2007. On effi-
cient deployment of sensors on planar grid. Computer Communications
30(14–15):2721–2734.

 43. Ye, F., S. Lu, and L. Zhang. 2005. Gradient broadcast: A robust, long lived sensor
network. Wireless Networks, 11(3):285–298.

 44. Ye, F., H. Luo, J. Cheng, S. Lu, and L. Zhang. 2002. A two tier data dissemination
model for large-scale wireless sensor networks. In Proc. of ACM MOBICOM’02,
Atlanta, GA.

Chapter eleven: An integrated intelligent decision support system 317

 45. Ye, F., H. Luo, S. Lu, and L. Zhang. 2004. Statistical en-route detection and filter-
ing of injected false data in sensor networks. In Proc. of IEEE INFOCOM, 2004.

 46. Zhu, M., Q. Wu, N. S. V. Rao, and S. S. Iyengar. 2007. Optimal pipeline decompo-
sition and adaptive network mapping to support remote visualization. Journal
of Parallel and Distributed Computing 67(8):947–956.

 47. Zhu, S., S. Setia, and S. Jajodia. 2003. LEAP: efficient security mechanisms for
large-scale distributed sensor networks. In Proc. of the 10th ACM Conference on
Computer and Communications Security (CCS ’03), Washington DC.

319

chapter twelve

Defense applications of SoS

Charles E. Dickerson

Contents

12.1 Background .. 319
12.2 The move toward capability engineering .. 320
12.3 Late twentieth century SoS history in U.S. defense systems 321

12.3.1 Description of forces and technologies 321
12.3.2 A revolution in military affairs ... 322

12.4 A transition to network enablement and system of systems 323
12.4.1 Network enablement of naval forces .. 323
12.4.2 Network-centric warfare report to Congress 324
12.4.3 From network-centric enablement to system of systems 326
12.4.4 SoSE for Air Force capability development 326

12.5 System of systems or network enablement? .. 327
12.5.1 A lesson from history ... 327
12.5.2 Systems engineering considerations .. 328
12.5.3 Critical roles of information exchange and capabilities

integration ..330
12.6 Examples of U.S. DoD defense applications of SoS 332

12.6.1 OSD SoS SE Guide ...333
12.6.2 Future Combat System (FCS) ...334
12.6.3 Single integrated air picture (SIAP) ..334
12.6.4 Naval integrated fire control–counter air (NIFC-CA)335
12.6.5 Commissary advanced resale transaction system (CARTS)335

12.7 Related work and research opportunities ...336
References ..336

12.1 Background
As the defense community has continued to move toward increasingly com-
plex weapon systems that must support joint and coalition operations, the
need for system of systems (SoS) engineering becomes more critical to the
achievement of military capabilities. The U.S. Department of Defense (DoD)

320 Charles E. Dickerson

and the U.K. Ministry of Defence (MoD) continue to face a critical challenge:
the integration of multiple capabilities across developing and often disparate
legacy systems that must support multiple warfare areas.

Over the past decade, the need for SoS-enabled mission capabilities have
led to changes in policy for the acquisition of systems and the assemblage of
battle forces. Defense acquisition structures have been reorganizing in order
to integrate acquisition activities in a way that leads to the achievement of
capabilities through a system-of-systems approach rather than from just the
performance of individual systems or platforms.

Earlier efforts to meet the challenge faced by the defense community
have included solutions using Network Centric Operations (NCO) in the
United States and Network Enabled Capability (NEC) in the United King-
dom. Although progress has been made, future progress can be expected
to depend upon the advancement of the practice of systems engineering
at the SoS level. System of systems engineering (SoSE) processes and prac-
tices must enable the acquisition and implementation of systems of systems
that support the integration of multiple capabilities across multiple warfare
areas. Recently there has been extensive debate across a broad community of
government, industry, and academic stakeholders about systems engineer-
ing processes and practices at the SoS level. But whatever form SoSE takes for
defense systems, the technical processes of SoSE must support the realiza-
tion of mission capabilities attainable from a system of systems that cannot
be attained from a single system.

12.2 The move toward capability engineering
Defense systems are designed and developed under defense acquisition pol-
icy. Recent changes in U.S. DoD acquisition policy were motivated by a focus
on capabilities-based acquisition. The idea of organizing the defense acquisi-
tion strategy around specific military capabilities is traceable to reforms in
the British Ministry of Defence (MoD) in the late 1990s. These reforms were a
significant departure from the traditional practice of organizing the acquisi-
tion strategy around specific threats to be countered by individual systems,
platforms, or military components. The concept of acquiring capabilities
has been institutionalized in the DoD and across the individual services
through the Joint Capability Integration and Development System (JCIDS)
process and revisions in the DoD 5000 policies. Capabilities-based planning,
to include prototyping and JCIDS, is now the emerging overarching concept
being used in DoD acquisition. In the United Kingdom, the MoD has contin-
ued to evolve its strategy for the acquisition of defense systems, emphasizing
that the “whole of their defence acquisition community, including industry”
must be “able to make the necessary shifts in behaviours, organisations, and
business processes” [1]. The basic principles of the MoD’s Smart Acquisition

Chapter twelve: Defense applications of SoS 321

are: “the primacy of through-life considerations; the coherence of defence
spread across research, development, procurement, and support; and suc-
cessful management of acquisition at the Department level.”

In line with this policy, the U.K. MoD regards Military Capability as
comprising contributions from across the set of “Defence Lines of Develop-
ment” (DLoD).* One of these is Equipment, the others being “Training, Per-
sonnel, Infrastructure, Concepts and Doctrine, Organisation, Information
and Logistics.” A ninth DLoD, Interoperability, is also defined, and is seen
as embracing all the others. An integrated capability thus requires suitable
components from all of the DLoDs to be assembled into a coherent whole, to
meet a specific mission need.

The United Kingdom has adopted the term NEC to reflect the aspiration
to ensure that military capability is network enabled, i.e., that all elements of
a force not only communicate effectively with one another, but enjoy all the
benefits of shared awareness and understanding, and which lead to better
informed decision making. This is now fundamental to U.K. force develop-
ment and represents a major contribution to the Interoperability DLoD men-
tioned above.

To do all of this effectively requires a broader approach to system of sys-
tems engineering, in which all of the components of the capability, at all
stages of their respective lifecycles, are regarded as systems which must be
engineered to operate together. Work continues in the United Kingdom to
mature this concept and devise practical approaches to its realization; this
is beyond the present scope of this chapter, which concentrates on develop-
ments within the U.S. DoD in this area.

12.3 Late twentieth century SoS history
in U.S. defense systems

In the last decades of the twentieth century, dramatic changes occurred in
both the commercial markets of technology and the traditional role of gov-
ernment-sponsored research and development for defense technologies.

12.3.1 Description of forces and technologies

The decade of the 1990s was a time of transition for coalition defense systems,
and especially so for U.S. defense systems. In the previous decades, the Cold
War had set the concept of operations and determined the types of systems
needed. A classical symmetric war against a massive ground force was envi-
sioned. Among the advanced technologies that were intended to give coali-
tion forces a significant advantage were stealth aircraft and precision guided

* The equivalent in the United States is DOTMLPF.

322 Charles E. Dickerson

munitions, but information technology (IT) was in its infancy in the defense
community. But by the end of the 1990s, the commercial investment in research
and development (R&D) for IT vastly exceeded that of the U.S. DoD. R&D for
the microchip for example, which had been developed at Texas Instruments
in the 1960s by the DoD, was now being driven by the commercial market so
strongly that defense acquisition strategies emphasized the need for commer-
cial off-the-shelf technologies (COTS). By the end of the 1900s, the U.S. Navy
had seen the development of its first COTS open-architecture combat system,
which would be deployed on the Virginia Class submarines shortly after the
turn of the century.

12.3.2 A revolution in military affairs

By the 1990s, the power of precision weapons coupled with an effective archi-
tecture based on sensor technology and the emergence of IT had been amply
demonstrated in the first Persian Gulf War and later in Kosovo. The appar-
ent discontinuous advantage in military capability and effectiveness of this
power was evidence of the viability of concepts originating from Soviet mili-
tary thought in the 1970s and 1980s, which are known as the Revolution in
Military Affairs (RMA). This theory of future warfare is intimately related to
the concepts of system of systems and network-centric warfare. Toward the
end of the 1990s, this theory was becoming part of the Joint Vision 2010 [2]
for warfare in what is now the twenty-first century. The interest in RMA as
an organizing concept goes beyond the national boundaries of the Cold War
nations, such as the United States and the United Kingdom in a symmet-
ric posture against the communist regime of the Soviet Union in the 1970s
and 1980s. India, Singapore, and the People’s Republic of China are currently
counted among the many nations with an interest in RMA. But the limiting
factor for a country to enter directly into the RMA is perhaps the infrastruc-
ture cost of the architecture.

The RMA point of view can be compared with radical changes in mili-
tary thought that emerged from new concepts of warfare between the first
and second World Wars, such as Blitzkrieg. This was a revolution in offen-
sive military capabilities based on the integration of weapons and com-
munications technology to achieve new capabilities—and the command
structure designed to exploit both simultaneously. All three elements were
essential to the success of this battlefield tactic. And the Nazi war machine
enjoyed a discontinuous advantage in military capability and effectiveness
comparable to those enjoyed by coalition forces in the Persian Gulf and
Kosovo.

Chapter twelve: Defense applications of SoS 323

12.4 A transition to network enablement
and system of systems

12.4.1 Network enablement of naval forces

At the turn of the decade, in the year 2000, under the auspices of the
National Academy of Sciences, the Naval Studies Board released the report,
Network-Centric Naval Forces [3]. This report was motivated in part by a dec-
laration from the Chief of Naval Operations that the Navy would be shift-
ing its operational concept from one based on platform-centric warfare to
one based on the concepts of network-centric warfare. The concept of NCO
was introduced as a new approach to war fighting. In an NCO system, a
set of assets, balanced in their design and acquisition, were envisioned to
be integrated so as to operate together effectively as one complete system
to accomplish a mission. The assets assembled in such a system were envi-
sioned to encompass naval force combat, support, and C4ISR (Command,
Control, Communications, Computing, Intelligence, Surveillance, and
Reconnaissance) elements and subsystems integrated into an operational
and combat network. Although the design and development of the assets
in an NCO system would require systems engineering, the assets would be
part of an integrated network supported by a common command, control,
and information infrastructure.

NCO was envisioned by the Naval Studies Board to derive its power from
a geographically dispersed naval force embedded within an information net-
work that would link sensors, shooters, and command and control nodes to
provide enhanced speed of decision making, and rapid synchronization of
the force as a whole to meet its desired objectives. The NCO approach would
enable naval forces to perform collaborative planning and to achieve rapid,
decentralized execution of joint actions. In this way, NCO forces could focus
the maneuvers and fires of widely dispersed forces to carry out assigned
missions rapidly and with great economy of force.

Figure 12.1 illustrates these concepts and how NCO can enable the massing
of effects without a massing of forces; i.e., in Figure 12.1, the weapons effects
can be massed against the threat even though the platforms may be geo-
graphically dispersed. Figure 12.1 also illustrates that network enablement is
as much about the capabilities achieved through the interoperation of systems
as it is about networks. The networks simply enable the interoperation [4]. The
conceptual shift from a platform-centric system architecture to a network-
centric system architecture is also illustrated. Platform-centric operations
usually involve a sectored Battlespace as a means of weapon systems control
and threat engagements (as illustrated in the left-hand panel of Figure 12.1).
Platforms carry sensors, processors, and weapons (or combinations thereof),

324 Charles E. Dickerson

the effectiveness of which may be increased by the integration enabled by
a network-centric architecture (as illustrated in the right-hand panel of Fig-
ure 12.1). The real-time fusing of multiple sensor outputs is another driver for
the target engagement architecture illustrated in Figure 12.1. Its importance
cannot be overemphasized; it is fundamental to NCO.

12.4.2 Network-centric warfare report to Congress

By the year 2001, all of the Armed Services and many of the agencies were
actively seeking to become network centric. The United States Congress
called for a report so as to better understand NCW and consider its impact
on defense spending. The Office of the Secretary of Defense (OSD) collected
and integrated the inputs from the various Services and the agencies into the
NCW DoD Report to Congress [5]. The Army, Navy, Air Force, Marine Corps,
National Security Agency/Central Security Office, Ballistic Missile Defense
Office, National Imagery and Mapping Agency, and Defense Threat Reduc-
tion Agency had all adopted visions and implementation plans for NCW.

NCW was now viewed as a maturing approach to warfare that would
allow the DoD to achieve Joint Vision 2020 operational capabilities. Further-
more, NCW sought to achieve an asymmetrical information advantage over
threat forces. As illustrated in Figure 12.2, this information advantage is
achieved, to a large extent, by allowing force access to a previously unreach-
able region of the information domain—the network-centric region—that is
broadly characterized by both increased information richness and increased
information reach.

The source of the transformational combat power enabled by NCW con-
cepts was attributed by the Report to Congress to be the relationships in

S P W S P W

S P W

S P W S P W

W P S

Battlespace

Battlespace

Battlespace

Platform-Centric Sectored

Battlespace

Network-Centric Shared

Battlespace

Battlespace

S P W

Processor Sensor

Platform 3

Platform 2

Platform 1

System Architecture

Weapon Network

System Architecture

Figure 12.1 System of systems integration through networks. (Adapted from [3].)

Chapter twelve: Defense applications of SoS 325

warfare that take place simultaneously in and among the physical, the informa-
tion, and the cognitive domains. Key elements of the transformation included:
Information Superiority, Decision Superiority, Dominant Maneuver, Preci-
sion Engagement, Focused Logistics, and Information Operations.

Each Service submitted NCW vision statements, which are briefly sum-
marized below.

In its NCW vision, the Army stated that accomplishing its vision was
strongly dependent on the potential of linking together and networking of
geographically dispersed combat elements. The theory behind the Army’s
NCW vision was that by linking sensor networks, Command and Control
(C2) networks, and shooter networks, it could achieve new efficiencies in all
military operations from the synergy that would be derived by simultane-
ously sharing information in a common operating environment. In addition,
such linkages would allow for the discovery of new concepts of operations
both among Army forces and Joint forces in theater.

The Navy’s Network Centric Operations (NCO) articulated its path to
NCW. It stated that, “In developing NCW systems, a different approach to
applying the principles must be taken. NCW requires that technology, tactics,
and systems be developed together.” The Navy submission pointed to three
military trends: a shift toward Joint effects-based combat, heightened reli-
ance on knowledge superiority, and use of technology by adversaries to rap-
idly improve capabilities in countering U.S. strengths. It noted that, “The
power, survivability and effectiveness of the future force will be significantly
enhanced through the networking of war fighters.”

The Air Force’s NCW vision recognized that dominating the information
spectrum is just as critical today as controlling air and space or occupying
land was in the past. And the time available for collecting information, pro-
cessing it into knowledge, and using it to support war fighting initiatives

Information
Reach

Information
Richness

. Content

. Accuracy

. Timeliness

. Relevance Platform-Centric
Region

Network-Centric
Region

Figure 12.2 Network-centric region of the information domain.

326 Charles E. Dickerson

is shrinking. Processing, exploiting, and manipulating information have
always been essential parts of warfare, but information has evolved beyond
its traditional role. “Today, information is itself both a weapon and a target.”
The vision also stated that the key to improving Air Force capabilities would
involve not just improvements to individual sensors, networking of sensors,
and C2 for sensors, but also in new ways of thinking about warfare and the
integration of U.S. forces.

While the Marine Corps has not historically used the term network-cen-
tric warfare, the Corps noted in its vision that the principles embodied by
the term have long been an integral part of Marine Corps operations. The
Corps acknowledged that its continued capabilities will depend on its ability
to capitalize on and expand its networked C2 structure to train and educate
future forces in mission effects–sensitive decision making.

12.4.3 From network-centric enablement to system of systems

The link between these two fundamental concepts can be traced back to a
perspective on the RMA that emphasizes the integration of advanced weap-
ons technology and information technology and the military organization
and doctrine to exploit both simultaneously. A system-of-systems point of
view was taken by Admiral William Owens [6] when he considered how
Command, Control, Communications, Computing, Intelligence, Surveillance,
and Reconnaissance (C4ISR) should be organized to support future warfare.
Specifically, he considered that the force assets for these key functions should
be organized into three “systems” that must interact with each other:

Intelligence, Surveillance, and Reconnaissance•	
Command, Control, Communications, and Intelligence Processing•	
Precision Force•	

This SoS concept is clearly enabled by the concepts of NCO.

12.4.4 SoSE for Air Force capability development

Four years after the submission of the NCW DoD Report to Congress, the
United States Air Force Scientific Advisory Board delivered an SoSE report
to the Air Force [7]. While recognizing existent policy and practices for sys-
tems engineering in the acquisition of defense systems, but given the emer-
gence of both the concepts and concerns about systems of systems, the Board
considered the question of how best to proceed with SoSE. At that time there
was confusion about what constituted SoSE, and there was little in terms of
codified practices that could be adapted for use within the DoD. And case
studies from the commercial world were not readily applicable to the DoD.
Four considerations were emphasized in the study in order to gain insight

Chapter twelve: Defense applications of SoS 327

into the way ahead: the role of the human in SoS, discovery and application
of convergence protocols, motivation issues, and experimentation venues.

The role of the human in an SoS can be part of the overall design, but it
could also equally result from a lack of adequate interfaces to support the
interactions of the systems. Either can create a challenging environment for
the human. The lack of sound human system interface designs can exacerbate
the challenges. The term convergence protocol was used to characterize the
election of a single protocol or standard by a group that simplifies connection
among different systems. Examples include simple standards like S-video
connections for entertainment products and communications protocols like
the Transmission Control Protocol/Internet Protocol (TCP/IP). A highly suc-
cessful convergence protocol for the DoD for SoS applications could enable
the use of dynamic discovery technologies for information management
among the systems. Motivations within the commercial sector that have led
to the successful development of SoS solutions are not readily applicable to
DoD. The Report recognized that further research was needed in order to
learn how to motivate, for example, DoD program managers to seek SoS
solutions. Three experimentation venues were recommended. The first was
one for developing concepts of operations, the second was for the evaluation
of candidate convergence protocols, and the third was focused on the rapid
fielding of SoS-enabled capabilities. The enhancement of infrastructure was
also seen as essential for the successful development of SoS capabilities.

12.5 System of systems or network enablement?
The development of military concepts related to the RMA over the last two
decades raises the question of whether the RMA is based on SoS or is driven
by network enablement.

12.5.1 A lesson from history

Using Blitzkrieg as a case study can shed some light on the question of SoS
versus network enablement of military capabilities. The Blitzkrieg RMA was
based on the integration of weapons and communications technology to
achieve military capabilities. Each tank in a Panzer division can be consid-
ered as an autonomous system, and in fact this was fundamental to the con-
cept of operations for Blitzkrieg. So, the tanks were a collection of systems,
which rightfully could be considered to be an SoS.

But the lynchpin of the new tactic was the radio [8]. Although radios had
been available to the military in World War I, they were bulky due to power
supply limitations. During the time period between the World Wars, early
efforts at miniaturization had reduced power demands, allowing reliable
radios to be installed in both tanks and aircraft. Portable radio sets were pro-
vided as far down in the military echelons as the platoon. In every tank there
was at least one radio. Although radios and communications links should

328 Charles E. Dickerson

not be confused with networks, it is a simple extrapolation to apply the SoS
concepts for C4ISR and precision force advocated by Admiral Owens to the
concepts of Blitzkrieg. That is to say, in a more modern time, the SoS (of
tanks) would have been network enabled.

12.5.2 Systems engineering considerations

Although there are various interpretations of the terms SoS and SoSE, it still
is useful at this point to consider formal definitions of the term system and
understand the implications for SoS and SoSE. The issue to be resolved is
whether an accepted definition of the term system can be applied to itself
to give a technically consistent definition of the term system of systems. Two
well-known definitions of the term system will be used as case studies for
this purpose. However, it is not the purpose of this chapter to advocate or
challenge specific definitions of the terms of systems engineering. Funda-
mental issues like this are currently a subject of discussion amongst the sys-
tems engineering community.

The INCOSE definition of system will be used as a case study for this pur-
pose, primarily because of its simplicity. The INCOSE Systems Engineering
Handbook [9] defines the term system:

A system is a combination of interacting elements
organized to achieve one or more stated purposes.

A similar definition put forth by Hitchins [10] emphasizes the nature
of emergence:

A system is an open set of complementary, interact-
ing parts with properties, capabilities, and behaviors
emerging both from the parts and their interactions.

The concept of open systems (referred to via open sets in the Hatley defi-
nition) derives from biological systems, which ingest and interact with their
environment, in contrast with the concept of closed systems in physics, where
energy is neither gained nor lost (at the system level).

The case study for Blitzkrieg showed how radios were the lynchpin for this
RMA and were the mechanism for the interaction of the tanks in a Panzer
division. Consequently, when either of the definitions is considered in light
of the Panzer SoS, radios and information exchange become key enablers.
Will this be generally true of most or all SoSs?

The basis for answering this question and resolving the broader issue
of a technically consistent definition of system and system of systems can be

Chapter twelve: Defense applications of SoS 329

expected to be resolved by modeling the definitions rather than just relying
on arguments based on the natural language definitions.

Figure 12.3 provides an example of a model that satisfies both of the above
definitions of system and aligns well with traditional principles of systems
engineering. The diagram in Figure 12.3 uses graphical notations from both
the Unified Modeling Language (UML) and the Systems Modeling Lan-
guage (SysML). The SysML notation makes clear that the realization of the
system derives from the organized actions and interactions of the elements that
comprise the combination. This is a commonly accepted principle of systems
engineering, referred to as emergent behavior.

Can the model presented in Figure 12.3 give a technically consistent defini-
tion of system and system of systems? It is clear that this model for system can
be logically substituted for the key word elements in Figure 12.3. This could
provide a model of the term system of systems. Whether this model can be
interpreted to reasonably satisfy the various accepted definitions of the term
system of systems across the systems engineering community is a separate
question. But it should be clear from these arguments that the issue of a tech-
nically consistent definition will not be resolved until methods (like modeling
languages) that are more rigorous than natural language are brought to bear.

With regard to the question of information exchange raised by the case
study of the Panzer SoS, it is useful in the model presented in Figure 12.3 to
consider what is being transported by the interactions between the elements
(of the system). Hatley has considered that interactions in man-made systems
are described by exactly three types of transport elements: energy, material,
and information [11]. Now, if an SoS is considered to be a system whose ele-
ments are other systems, then there are exactly three types of exchanges that

Stakeholders

COrganizing
Principle(s)

is 1,...,n

1

1,...,k
1,...,m

Associates
[elements]

Associates
[interactions]

have

identifies
of

System

state

[achieves] 1,...,n

Combination

System
Elements

Interactions
[Organized]

Combinations
[Organized]

Properties,
Behaviors, and

Capabilities

achieve

Purpose(s)

realize

Interactions

A system is a combination of interacting elements organized to realize properties,
behaviors, and capabilities that achieve one or more stated purpose(s).

Figure 12.3 Logical model of system.

330 Charles E. Dickerson

can be made between the systems. If these systems are considered individu-
ally to have any kind of autonomy, then the exchange of material or energy
between the individual systems, while possible or necessary is not the pri-
mary type of exchange. Again information exchange is the critical and per-
haps primary type of exchange between the systems.

The next case study will again emphasize the importance of information
exchange between systems in an SoS. It will also introduce the idea that the
integration of systems can occur at the capabilities level.

12.5.3 Critical roles of information exchange
and capabilities integration

This section presents another case study, which illustrates the interplay
between the concepts of SoS and network enablement: Fleet Battle Exper-
iment–India (FBE-I), Time Critical Strike (TCS) [12]. The success of these
concepts was demonstrated in actual combat by coalition land forces in
Afghanistan after the attacks of September 11, 2001, and again by the Marine
Corps in their swift march to Baghdad during the invasion of Iraq from
March 18 to May 1, 2003. This was a marked departure from a centuries-long
tradition of how the Marines had fought.

The FBEs were a series of joint experiments initiated by the Chief of Naval
Operations (CNO) and designed to investigate NCO as a framework for the
development of new doctrine, organizations, technologies, processes, and
systems for future war fighting. The Navy Warfare Development Command
(NWDC) was the CNO’s agent for planning and implementing these experi-
ments in partnership with the numbered fleets. It should be noted that shortly
after the time of the FBE-I, the Navy adopted the Air Force (and ultimately
joint) terminology of Time Sensitive Targeting (TST) instead of TCS.

Figure 12.4 exhibits the operational concept (more specifically the DoDAF
Operational View- 1 (OV-1)) for the TCS experiment. The OV-1 may not
look like the kind of operational concept that is more frequently seen, i.e.,
a graphic or cartoon with systems operating in a theater or scenario. This is
because the planners for FBE-I were truly focused on NCO, i.e., on operations
not systems. This is an operator’s view of the experiment, exactly as it was
intended to be executed.

There are three types of entities in Figure 12.4: high-level operational
activities depicted in the context of an abstract theater, force elements and
the C2 structure that supports them, and an identification of the combina-
tion of systems that enable the TCS capabilities sought in the objectives of
the experiment:

Operational activities
Ship to Objective Maneuver (STOM)
Time Critical Strike (TCS)
Force elements

Chapter twelve: Defense applications of SoS 331

Littoral Penetration Task Force (LPTF)
Special Operations Force (SOF)
C2 structure
Commander, Joint Task Force (CJTF)
Joint Force Air Component Commander (JFACC)
Joint Force Maritime Component Commander (JFMCC)
Enabling systems
Extended Range Guided Munition (ERGM)
Land Attack Standard Missile (LASM)
Tactical Tomahawk Land Attack Missile (TTLAM)
Advanced Land Attack Missile (ALAM)
Tactical Aircraft (TACAIR), in this case F/A-18 strike fighters

The theater is divided into two parts by a littoral interface depicted by a
brown dashed line: (1) land (to the right of the line) and (2) sea (to the left).
Historically the Marines would “storm the beach,” establish a safe beach
head, and then build up supplies (called the iron mountain) at the beach head
in preparation for further fighting to secure a larger area. Once the larger
area was secure, the Army would land and take over inland operations.

In this depiction of the theater, the CJTF leads the operation. The JFMCC
both secures a portion of the littoral interface (with fires, for example) and
provides various weapon systems to perform TCS operations. The JFACC
controls the air space, so the JFMCC and the JFACC must coordinate and col-
laborate. The joint forces in this OV-1 are geographically dispersed.

What has changed for the Marines in FBE-I when they become an LPTF?
In this new concept they are employing classic fire and maneuver tactics in
order to penetrate more deeply and swiftly than ever before. The Tactical

Phase Lines

STOM
C JTF

JFMCC

ERGM
LASM
TTLAM

TACAIR
JFMCC

Threat
JF ACC

OBJECTIVE

SOF

SOF

LPA

TAOR

STOM

FBE-I TCS OV-1

ALAM

LPTF

TAOR

LPA

Figure 12.4 Fleet Battle Experiment-India operational concept.

332 Charles E. Dickerson

Areas of Regard (TAOR in the OV-1) are areas where they expect to fight. The
Littoral Penetration Areas (LPA) are areas of maneuver, where the STOM is
a maneuver toward the objective. (More than one STOM may be required.)
Why have they not done this before? In the past they only went a short dis-
tance and carried a more significant amount of fire power than in the LPTF
concept. To penetrate deeper (to a designated objective) and more swiftly, it
was necessary to leave fire power behind. So, where will the requisite fire
power come from when they need it? It came from TCS in FBE-I and, in cur-
rent terminology, will come from TST. They are also supported by SOF.

This experiment embodies both the tenets of NCO and the SoS concepts of
Admiral Owens, where three (grand) systems of ISR, C4, and Precision Force
are integrated to create emergent behaviors and military capabilities not oth-
erwise achievable. Based on the systems engineering considerations of the
previous section, it is clear that the mission-essential interactions between
these three systems are based on the exchange of information. This is not to
diminish the essential need for energy (in the form of kinetic weapons) and
material (in the form of logistic support) to be placed into the Battlespace.
However, it is the integration of the ISR, C4, and weapon systems at the mis-
sion level that enabled the new Precision Force capabilities (i.e., TCS) sought
by FBE-I.

This case study should prompt the systems engineer (and the SoS engi-
neer) to consider two important things: first, the exchange of information is
both central and critical for an SoS to enable a military mission, and second,
but equally important, mission capabilities enabled by an SoS (or any system,
for that matter) must be understood through integration of operational capa-
bilities in a mission context.

The concepts of capabilities engineering and integration are currently being
explored by the defense community, but will face technical challenges until
stricter standards are established for the terminology of systems engineering
and SoSE. For example, the INCOSE natural language definition of system
is stressed by the concept of capabilities integration because, if interactions
are only between the elements of the system, then there is no mechanism (in
the definition) for the interactions of the effects caused in the Battlespace.
However, the model depicted in Figure 12.3 could support concepts where
the system elements interact with elements of the Battlespace (which are
not part of the system). Ongoing research in the defense community can be
expected to address these types of questions in the years to come.

12.6 Examples of U.S. DoD defense applications of SoS
The U.S. DoD has defined SoS through the joint staff instruction CJCSI
3170.01E, 11 May 2005, as follows:

Chapter twelve: Defense applications of SoS 333

A system of systems (SoS) is a set or arrangement of
interdependent systems that are related or connected
to provide a given capability.

In the DoD concept of SoS, the loss of any part of the SoS will significantly
degrade the performance or capabilities of the whole. This definition clearly
supports the SoS concept of Admiral Owens. A priori it exhibits no prefer-
ence for the nature of the interdependence (e.g., does information exchange
have primacy for enabling SoS capabilities?). And it may be a candidate defi-
nition for a technically consistent definition of system and system of systems.

12.6.1 OSD SoS SE Guide

The writing of the System of Systems Systems Engineering Guide was initi-
ated in May 2006, when a task was issued by the Deputy Under Secretary of
Defense for Acquisition and Technology (DUSD (A&T)) to develop a Guide
for SoS SE. The objective was to provide guidelines to defense system pro-
gram manager for a better understanding of how the system under their
management might be part of a larger SoS, and how the management of a
defense acquisition in an SoS environment might differ from the acquisition
of a single system. Government, industry, and academia collaborated under
the leadership of DUSD (A&T), and Version 0.9 of the Guide was released on
December 22, 2006 [13]. The Guide describes the application of systems engi-
neering at a system-of-systems level and has served as a mechanism for the
broader community to come together, to discuss the wide spectrum of views
on this topic, and capture the views that everyone does agree upon.

For the six months after its release, OSD used the Guide to conduct a pilot
study on how SoS SE is being practiced in the DoD. The defense community
was then asked to submit their comments as part of the effort to pilot the rec-
ommendations in the Guide. Over twenty U.S. and international stakeholder
organizations from government, industry, and academia have participated
in the pilot study.

Emerging insights from the pilot show the following characteristics of a sys-
tem of systems in the DoD today: (1) they tend to be ongoing efforts to satisfy
user capability needs through an ensemble of systems, (2) they are not new
acquisitions per se, (3) the SoS manager typically does not control the require-
ments or funding for the individual systems, (4) the SoS is focused on the evo-
lution of capability over time, and (5) a functioning SoS requires start-up time
but, in a steady state, seems well suited to routine incremental upgrades.

The comments on the Version 0.9 release have been collected and were
assembled and reviewed by the working group for the Guide. A new version
of the Guide has been issued for broad review and use.

In the original OSD SoS SE Guide the U.S. DoD Services submitted SoS
program descriptions, some of which are summarized below.

334 Charles E. Dickerson

12.6.2 Future Combat System (FCS)

The U.S. Army’s FCS is a new development program that is intended to oper-
ate as a cohesive system of systems where the whole of its capabilities is to be
greater than the sum of its parts. As the key to the Army’s transformation,
the network, and its logistics, and Embedded Training (ET) systems, enable
the Future Force to employ revolutionary operational and organizational
concepts. The network enables soldiers to perceive, comprehend, shape, and
dominate the future battlefield at unprecedented levels. The FCS network
consists of four overarching building blocks: System of Systems Common
Operating Environment (SoS COE); Battle Command (BC) software; commu-
nications and computers (CC); and intelligence, reconnaissance and surveil-
lance (ISR) systems. The four building blocks synergistically interact, enabling
the Future Force to see first, understand first, act first, and finish decisively.

FCS is an example of an SoS currently under development, with many
degrees of freedom from an engineering perspective. A traditional SE
approach (top-down analysis, synthesis, and evaluation) has been applied

12.6.3 Single integrated air picture (SIAP)

The single integrated air picture (SIAP) under development by the Joint SIAP
Systems Engineering Organization (JSSEO) consists of common, continual,
and unambiguous tracks of airborne objects of interest in a surveillance area.
SIAP is derived from fused real-time and near real-time data and consists of
correlated air object tracks and associated information from multiple sen-
sors. The purpose of a SIAP is to solve a confusing air picture. Real-world
operations, exercises, and evaluations highlight joint war fighting shortfalls.
Disparate systems within a service as well as across multiple services that
share track management data have different views. The views, as well as
the track identification number, cause confusion in communication among
system operators.

The SIAP requirements must provide a solution that is scalable and filter-
able and supports situation awareness and battle management. Each airborne
object must have one and only one track identifier and associated characteris-
tics. The solution will reduce the risk of fratricide to U.S. and coalition forces
caused by incorrect correlation and track identifier association, provide con-
fidence in the air picture, provide point and area defenses the opportunity to
engage beyond their self-defense zones, and quickly coalesce to repel asym-
metric threats such as cruise and ballistic missiles.

The SIAP will initially be introduced via Capability Drops on host plat-
forms of the U.S. Navy Aegis, SSDS, E2, and the Air Force E3 AWACS, Battle
Control System (BCS) and the RC-135V/W Rivet Joint. The Capability Drops
are targeted at eliminating specific interoperability issues, providing C4I
enhancements, and delivering an executable integrated architecture in a
two-year spiral delivery process.

Chapter twelve: Defense applications of SoS 335

The SIAP operational Joint Battle Management and Command and Con-
trol (BM/C2) reflect new capabilities of networked interoperable heteroge-
neous systems as opposed to traditional monolithic systems with a single
system orientation. Tactical system networks are dynamic with autonomous
mobile nodes and ad hoc membership. The autonomous constituent systems
make up the SIAP SoS to fulfill a specific mission that may be presented.
This is a hybrid SoS, whereby there is some level of command and control
and autonomous systems fall under the area commander to fulfill a mission.
This is characterized by loosely coupled, independently controlled nodes
sharing collaboration rules via centralized guidance.

The SIAP is implemented by applying Model Driven Architecture
(MDA™) in developing an executable peer-to-peer (P2P) integrated archi-
tecture behavior model to form a platform-independent model (PIM). The
services receive the PIM for their host platforms and create platform-specific
models (PSM) for their hosts applying adaptive layers to interface with their
specific sensors shown.

12.6.4 Naval integrated fire control–counter air (NIFC-CA)

NIFC-CA seeks to evolve a family of systems of mixed maturity to extend
the Naval Theater Air and Missile Defense Battlespace to distances that are
well beyond the existing, stand-alone capability of surface ship–controlled
air defense weapons. NIFC-CA is a capabilities-based program that takes
current and emerging technology from Core Pillar Programs (Cooperative
Engagement Capability (CEC), Aegis, Standard Missile (SM-6), and E-2D
Advanced Hawkeye (AHE)) and other related programs and integrates them
together to form the successful implementation of a system of systems capa-
bility. The NIFC-CA focus is on integrated fire control for over-the-horizon
(beyond visual range) and engage-on-remote capability. NIFC-CA is a key
component of Navy Transformation “Sea Shield.” NIFC-CA is an SoS sys-
tems engineering capability designed to define the functional allocation for
the pillar elements within NIFC-CA (SM-6, E-2D, CEC, and Aegis). The syn-
chronization of programs across cost/schedule/performance is the key chal-
lenge for this SoS.

12.6.5 Commissary advanced resale transaction system (CARTS)

CARTS is the DeCA replacement point-of-sale (POS) system used to process
customer purchases, capture sales and financial data from those purchases,
produce management reports, and provide information to other Defense
Commissary Agency (DeCA) business systems. CARTS will be a COTS sys-
tem with middleware to support the interfaces to the DeCA business sys-
tems. It will also provide its customers with services similar to future grocery
industry technology advances without disrupting commissary operations.

336 Charles E. Dickerson

This program has a development strategy of utilizing COTS to the fullest
extent and provides the complete system capability in one step, and software
reuse is very common. Challenges with COTS include making the determi-
nation whether the COTS architecture can support military requirements.
A careful examination of the architecture is required to determine if there
is sufficient capability for growth to accommodate the additional military
requirements. A CAIV (cost as independent variable) analysis is important
to conduct over the complete product life cycle.

12.7 Related work and research opportunities
In addition to the breadth of work on SoSE, NCO, and NEC that is ongoing,
the concepts of systems engineering itself are currently an active topic of dis-
cussion amongst the larger community. The International Organization of
Standards (ISO) is engaged with issues of architecture concepts through two
Working Groups: JTC1/SC7/WG42 and TC184/SC5/WG1. The International
Council on Systems Engineering (INCOSE) has various initiatives to include
a Special Workshop on Architecture Concepts at the International Workshop
2008 (IW08), which will also support the work of the ISO Working Groups.
The IEEE has also recently initiated the International Council on Systems
of Systems (ICSOS). And for the past eight years the Object Management
Group (OMG) has been maturing the practices of Model Driven Architec-
ture (MDA™), which are being linked to the practice of systems engineering
through collaboration with INCOSE.

Research on the foundations of systems engineering as evidenced by
INCOSE and ISO should lead to a sharper understanding of SoSE and the
role of NCO, NEC, and related topics such as capabilities engineering and
integration. IEEE efforts through ICSOS can be expected to further promote
a broad community interest in SoSE that will both seek and advance solu-
tions to SoS problems and extend the methods and practices of systems engi-
neering to SoSE. Research on the extension of the OMG MDA to systems and
system of systems engineering should also be an increasingly active area of
active research over the next several years.

References
 1. The Secretary of State for Defence. 2005. Defence Industrial Strategy. Defence

White Paper Cm 6697, London.
 2. Joint Chiefs of Staff. 1996. Joint Vision 2010. Government Printing Office, Wash-

ington, DC.
 3. Committee on Network-Centric Naval Forces. 2000. Naval Studies Board,

Network-Centric Naval Forces: A Strategy for Enhancing Operational Capabilities.
National Academy Press, Washington, DC.

 4. Alberts, D. S. et al. 1999. Network Centric Warfare: Developing and Leveraging Infor-
mation Superiority, CCRP Press, Washington, DC.

Chapter twelve: Defense applications of SoS 337

 5. Office of the Secretary of Defense. 2001. Network Centric Warfare. Department of
Defense Report to Congress. Office of the Secretary of Defense, Washington, DC.

 6. Owens, W.A. 1996. The Emerging U.S. System-of-Systems, Number 63.The National
Defense University, Institute of National Security Studies, Washington, DC.

 7. Saunders, T. et al. 2005. Systems-of-Systems Engineering for Air Force Capability
Development, Report SAB-TR-05-04. United States Air Force Scientific Advisory
Board, Washington, DC.

 8. Hall, C. 2000. MITRE Corporation, private communication.
 9. International Council on Systems Engineering. 2007. INCOSE Systems Engineer-

ing Handbook, v.3.1. INCOSE Central Office, Seattle, WA.
 10. Hitchins, D. K. 2003. Advanced Systems Thinking, Engineering, and Management.

Artech House, Boston, MA.
 11. Hatley, D. J., Hruschka, P., Pirbhai, I. 2000. Process for System Architecture and

Requirements Engineering. Dorset House Publishing, New York.
 12. Dickerson, C.E. et al. 2003. Using Architectures for Research, Development, and

Acquisition. Office of the Chief Engineer of the Navy, Assistant Secretary of
the Navy, August 2003. Available via Defense Technical Information Center
(DTIC): (www.dtic.mil). AD Number ADA427961.

 13. Department of Defense. 2006. System of Systems Engineering Guide, Version 9.
Director, Systems and Software Engineering, Deputy Under Secretary of
Defense (Acquisition and Technology), Office of the Under Secretary of Defense,
(Acquisition, Technology and Logistics).

339

chapter thirteen

System of air vehicles
Richard Colgren

Contents

13.1 International regions ..342
13.2 Air traffic management ..342
13.3 Air traffic control ...343
13.4 Pilot certification ...343
13.5 Aircraft certification ...344
13.6 Aircraft registration ..344
13.7 The National Airspace System ..344
13.8 Airspace description criteria ...345

13.8.1 Volume ...345
13.8.2 Proximity ...345
13.8.3 Time ..345
13.8.4 Attributes ...345

13.9 Flight rules ...345
13.10 ICAO airspace categories ...346
13.11 Overview of ICAO/FAA airspace designations347
13.12 Description of ICAO/FAA airspace classifications347

13.12.1 Class A airspace ..348
13.12.2 Class B airspace ...348
13.12.3 Class C airspace ..349
13.12.4 Class D airspace ..349
13.12.5 Class E airspace ...349
13.12.6 Class F airspace ...350
13.12.7 Class G airspace ..350

13.13 Enroute structures ..350
13.14 Low-altitude airways (Victor airways) ..350
13.15 Jet routes ... 351
13.16 VFR flyways ... 351
13.17 VFR transition routes.. 351
13.18 Air traffic control assigned airspace .. 352
13.19 VFR waypoints chart program ... 352
13.20 Special use airspace .. 352

13.20.1 Prohibited areas .. 352

340 Richard Colgren

13.20.2 Restricted areas ...353
13.20.3 Military operations areas ..353
13.20.4 Alert areas ..354
13.20.5 Warning areas ... 355
13.20.6 Controlled firing areas ... 356

13.21 Military training routes ... 356
13.22 Other military airspace structures ... 357

13.22.1 Slow routes... 358
13.22.2 Low altitude tactical navigation areas 359
13.22.3 Local flying areas .. 359
13.22.4 Aerial refueling routes ... 359
13.22.5 Temporary special use airspace ..360
13.22.6 Cruise missile routes ..360
13.22.7 National security areas ..360

13.23 Oceanic and offshore operations ..360
13.24 Air defense identification zone ... 361
13.25 Environmentally sensitive areas ... 361
13.26 Airdrops ... 362
13.27 Special federal aviation regulation ... 362
13.28 Noise abatement procedures ... 362
13.29 Air traffic control communications .. 362
13.30 Summary and conclusions ..363
Acknowledgments ..363
References ..364

The global ICAO airspace provides an excellent example of a system-of-
systems (SoS) concept. This global airspace is composed of 190 coordinated
National Airspace Systems (NASs). Each NAS is one part of a member nation’s
National Transportation System (NTS). A NTS appears as layered networks
composed from heterogeneous systems [1]. They achieve synergy by enabling
individuals and groups to operate within each NTS composing this global
system to achieve the desired overall system performance with an extremely
high safety rate. This concept has been successfully implemented and oper-
ated over many years. To successfully operate within this airspace it is nec-
essary for the aircraft operator to understanding applicable regulations and
their structure. The regulations prescribe the training required by aircraft
operators based on the flight activities within which they participate. Regu-
lations cover operating standards and flight rules, airspace classes, airways,
and routes. Aircraft certification requirements are based on the type of flight
activities for which they are designed and constructed. The aircraft’s systems
must all be certified to comply with these regulations and standards.

Benefits are derived from a SoS approach to the global ICAO airspace.
Published papers detail specific benefits to this approach [1–5]. A SoS analy-
sis allows for consideration of scope dimensions (e.g., multimodal impacts

Chapter thirteen: System of air vehicles 341

and policy, societal and business enterprise influences) and network inter-
actions (e.g., layered dynamics within a scope category). This treatment
accommodates the higher level interactions seen within each NTS as well as
at the global ICAO airspace architecture level. This ensures that modifica-
tions to the Air Transportation System (ATS) will have the intended effect
[1]. This ultimately leads to improved outcomes from high-consequence ATS
technological, socioeconomic, operational, and political decisions [2]. This is
especially true in efforts to transform air transportation by incorporation of
superior transportation architectures and technologies within an evolution-
ary framework [4].

Air transportation networks consist of concourses, runways, parking
areas, airlines, cargo terminal operators, fuel depots, retailers, catering estab-
lishments, etc. [1]. SoS methodologies are required to rapidly model, analyze,
and optimize air transportation systems [4]. By approaching such problem
spaces from a SoS perspective, we can find the proper balance between such
system characteristics as risk, flexibility, and productivity. The SoS charac-
teristics of the ICAO/FAA airspace are shown in Table 13.1. Its successful
operation as a SoS requires standardized communications among individu-
als and groups across enterprises through protocols approved by regulations
and verified by certification.

Table 13.1 SoS Characteristics of the ICAO/FAA Airspace

Enterprise
Individual
or Group Communications Protocol

Air Traffic Mgt. X X
Aircraft Oper. X X
Pilot Cert. X X
Aircraft Cert. X X
Aircraft Reg. X
Airspace System X
Flight Rules X X
Airspace Cat. X
Enroute Str. X
Victor Airways X
Jet Routes X
VFR Flyway X
VFR Transition Routes X
Special Use Air. X
Temporary Special Use X
National Security Areas X
Air Defense Id. Zone X
Air Traffic Coms. X

342 Richard Colgren

The International Civil Aviation Organization (ICAO), which manages the
international Air Traffic Control (ATC) system, has been in operation since
April 1947. It was built around pre-existing international agreements and
regulations as an agency of the United Nations [6]. It codifies the principles
and techniques of international air navigation and fosters the planning and
development of international air transport to ensure safe and orderly growth
[7]. It ensures standards, such as the international use of English for com-
munications and the specific frequency ranges to be used for these and all
other required command and control operations. The ICAO Council adopts
standards and recommended practices for member states concerning air
navigation, the prevention of unlawful interference, the facilitation of border
crossings for civil aviation, and the protocols for air accident investigations
used by transport safety authorities. These protocols are also known as the
Chicago Convention.

The FAA provides for the safe separation of aircraft within U.S. airspace,
including in and out of U.S. airports [8]. While the basic design of the U.S.
ATC system dates back to the 1950s, this design has been adapted as demands
on the system’s capacity have continued to rise. There are three critical com-
ponents of the ATC: communications, navigation, and surveillance. These
are continuously modernized to maintain the safety and efficiency of the air
transportation system. Such updates must be accomplished under interna-
tional agreements to maintain global ATC compatibility.

13.1 International regions
The International Civil Aviation Organization (ICAO) has divided the
world’s airspace into multiple regions served by seven regional offices [6].
These regions and the locations of their offices are as follows: (1) Bangkok,
Thailand, serving the Asia and Pacific regions, (2) Cairo, Egypt, serving the
Middle East, (3) Dakar, Senegal, serving Western and Central Africa, (4)
Lima, Peru, serving South America, (5) Mexico City, Mexico, serving North
America, Central America, and the Caribbean, (6) Nairobi, Kenya, serving
Eastern and Southern Africa, and (7) Paris, France, serving Europe and the
North Atlantic. Each region has several national airspace control organiza-
tions that are members of the ICAO, such as the FAA for the United States
within North America, served by the Mexico City office.

13.2 Air traffic management
Air traffic management is the means by which the flow of air traffic is orches-
trated within each National Airspace System (NAS). It is based on capacity
and demand. This is accomplished by using a systems approach that con-
siders the impact of individual actions on the whole [9]. Traffic management
personnel consider who or what may be impacted to focus on a coordinated
effort to ensure equity in delivering air traffic services. Air traffic managers

Chapter thirteen: System of air vehicles 343

can then use tools, known as Traffic Management Initiatives (TMIs) to help
manage the flow of air traffic. Examples of these are: Special Traffic Manage-
ment Programs (STMPs), Ground Delay Programs (GDPs), Airspace Flow
Programs (AFPs), Miles-in-Trail (MIT) Restrictions, and Coded Departure
Routes (CDRs).

13.3 Air traffic control
Air traffic control (ATC) is a service provided by ground-based controllers,
who direct aircraft on the ground and in the air. An air traffic controller’s
primary task is to separate aircraft to prevent them from coming too close
to each other by enforcing lateral, vertical, and longitudinal separation
standards. Their secondary tasks include ensuring safe, orderly, and expedi-
tious flow of traffic, and providing information to pilots, such as weather,
navigation information, NOTAMs (NOtices To AirMen), and traffic adviso-
ries to Visual Flight Rules (VFR) traffic. In many countries, ATC services are
provided throughout the majority of airspace, and its services are available
to all users (private, military, and commercial). When controllers are respon-
sible for separating some or all aircraft, such airspace is called a controlled air-
space in contrast to an uncontrolled airspace, where aircraft may fly without the
use of the air traffic control system. Depending on the type of flight and the
class of airspace, ATC may issue instructions that pilots are required to fol-
low, or merely flight information (in some countries known as advisories) to
assist pilots operating within the airspace. In all cases, the pilot in command
has final responsibility for the safety of the flight and may deviate from ATC
instructions in an emergency. To ensure communication, all pilots and all
controllers everywhere are required to be able to speak and understand Eng-
lish, although they may use any compatible language [10].

13.4 Pilot certification
To ensure safe aircraft operations, pilots are required to undergo training to
approved standards. Once this training is successfully completed and the
pilot’s performance is verified, pilots are appropriately certified [11]. Pilot
certification in the United States is accomplished under the direction of the
appropriate FAA region, following their certification requirements docu-
ments such as Federal Acquisition Regulations (FAR) Part 61 [12]. Using
such controlling documents and regulations means that a great majority of
this work can be accomplished by local, non-FAA personnel. Special varia-
tions on this process exist for some aircraft types and methods of operation.
The general groupings of pilot certification requirements are: (1) no pilot
certification, such as with ultralight aircraft, (2) required ground training on
regulations and conventional aircraft operations, (3) required ground train-
ing and instructor sign-off for unsupervised solo operations, (4) successful
passage of a written test, such as the FAA glider pilot written examination,

344 Richard Colgren

(5) issuing a special pilot certificate by the FAA based on satisfactory com-
pletion of an examination and observed performance, and (6) conforming
to the certification requirements of FAR Part 61 [12] for student and pri-
vate pilots. More advanced ratings, such as for commercial operations and
for operating large, heavy aircraft, also exist. Airman certification for the
operators of air vehicles, with some exceptions, is required. This is to ensure
that all airmen meet aeronautical knowledge, age, medical, and experience
requirements for operating these vehicles.

13.5 Aircraft certification
In addition to regulations for type and operation, aircraft/equipment and/
or their component parts are required to meet the airworthiness certification
standards specified for aircraft [9]. Special variations on this process exist for
some aircraft types and methods of operation, such as ultralights or experi-
mental aircraft.

13.6 Aircraft registration
Most air vehicles, with special exceptions based on air vehicle type and opera-
tion, must be nationally registered and are required to display their registra-
tion number. The reasons for registration center on the identification of any
offenders of airspace operational rules. The ICAO’s and the FAA’s experience
in identification of offenders and processing enforcement action validates this
need for vehicle identification. National registration systems are immediately
accessible to the FAA and the ICAO for such enforcement actions [11].

13.7 The National Airspace System
The world’s navigable airspace is divided into three-dimensional segments,
each of which is assigned to a specific class. Most nations adhere to the clas-
sifications specified by the ICAO and described within this chapter. Indi-
vidual nations also designate special-use airspace, which places additional
rules on air navigation for reasons of safety or national security [13,14]. The
National Airspace System (NAS) within the United States consists of all air-
space above the ground up to 60,000 feet Mean Sea Level (MSL). Additionally,
although the NAS officially only extends to 60,000 feet MSL, some special-
use airspace extends to exo-atmospheric limits, and the FAA does want to
be aware of vehicles operating above the NAS. Despite the apparent vastness
of this resource, it has become crowded (in some places), and competition
for its use is increasing. By law, the FAA is the controlling authority for all
airspace within the United States. To provide orderly and safe use of this air-
space, the FAA has developed and published numerous regulations which
are found within Chapter 14 of the U.S. Code of Federal Regulations [15]. Part
11 prescribes the procedures to be followed in the initiation, administrative

Chapter thirteen: System of air vehicles 345

processing, issuance, and publication of rules, regulations, and FAA orders.
Part 71 designates the airspace structure including airspace classes, airways,
routes, and reporting points. Part 73 designates special use airspace and pre-
scribes the requirements for the use of that airspace.

13.8 Airspace description criteria
When defining a section of airspace, four criteria are considered [13].

13.8.1 Volume

Volume is a key concept to understanding the amount of airspace actually
being used [13]. The length and width of airspace are visible on a two-dimen-
sional map, but the floor and ceiling must also be included to see the com-
plete picture, as airspace is defined using three dimensions. Airspace used
for flight operations could begin as low as the surface and extend upward
to 60,000 feet MSL. This characteristic of airspace enables numerous users to
safely operate at different altitudes within the same geographical location.

13.8.2 Proximity

Airspace is often associated with geographic areas, such as an airport, an air-
field, or a military installation. Proximity affects the utility of the airspace [13].

13.8.3 Time

Airspace is allotted for use at specific times. A designated airspace can be
used to separate unusual flight maneuvers from other aircraft [13].

13.8.4 Attributes

Airspace attributes describe the physical characteristics of the underlying
land that make certain pieces of airspace unique [13]. Those attributes might
be ranges needed to meet testing and training requirements. These can
include open water, desert, or mountains.

13.9 Flight rules
The terms instrument flight rules (IFR) and visual flight rules (VFR) are used to
denote two different types of aircraft operations requiring different equip-
ment onboard the aircraft and different levels of pilot certification [16]. Gen-
eral aviation aircraft flying between local airports, sight-seeing, etc. comprise
the majority of flying completed under VFR rules. VFR operations generally
allows pilots to fly off published routes using visual references such as high-
ways, power lines, railroads, etc. In order to fly under VFR rules, the weather

346 Richard Colgren

must meet or exceed the minimum requirements. This generally means there
must be at least three miles of visibility, and the pilot must be able to remain
clear of clouds by at least 500 feet MSL.

The actual minimum requirements depend on the exact airspace classifi-
cation. VFR flight is restricted to altitudes below 18,000 feet MSL and does
not require flight clearances from Air Traffic Control (ATC). Note that “Spe-
cial VFR” is an exception to this rule. VFR pilots exercise “See and Avoid”
clearance precautions, which means that they must be vigilant of their
surroundings and alter their course or altitude, as necessary, to remain clear
of other traffic, terrain, populated areas, clouds, etc.

IFR operations require pilots to be trained and certified in IFR naviga-
tional methodologies and to adhere to ATC clearances containing specific
flight route and altitude directions. ATC provides clearances for these IFR
operations. ATC uses radar and navigational aids to keep aircraft operating
under IFR rules separated from each other. Regardless of whether operating
under VFR or IFR rules, the pilot in command is ultimately responsible for
the safe operation of the aircraft and can deviate from ATC instructions to
maintain safe operation.

Within the United States [12] Part 91 prescribes general operating and
flight rules governing the operation of U.S. registered aircraft both within
and outside of the United States. Subsections of Part 91 of Title 14 of the Code
of Federal Regulations (14 CFR) [15] that may be of particular importance are:
(1) careless or reckless operation, (2) operating near other aircraft, (3) right of
way rules (except water operations), and (4) minimum safe altitudes (91.119).

13.10 ICAO airspace categories
Each nation’s airspace is divided into two broad categories, controlled and
uncontrolled airspace [16]. Within these two categories, there are a variety of
ICAO classifications which determine flight rules, pilot qualifications, and
aircraft capabilities required in order to operate within any airspace. On
March 12, 1990, the ICAO adopted the current airspace classification scheme.
The classes are defined in terms of flight rules and interactions between air-
craft and ATC. Classes A through E are referred to as controlled airspace.
Classes F and G are referred to as uncontrolled airspace. The specific clas-
sification of any area within the United States is determined by the FAA fol-
lowing ICAO classifications and is broadly based upon the following:

Complexity or density of aircraft movements•	
Nature of operations conducted within the airspace•	
Required level of safety•	
National and public interest•	

It is important that all pilots, dispatchers, and system managers be familiar
with the operational requirements for each of the various types of airspace.

Chapter thirteen: System of air vehicles 347

This is required to assess potential impacts on the ground activity underlying
them and potential conflicts for any aircraft operating within that airspace.
Both the pilot and the dispatcher must be familiar with all points of contact
regarding controlled and Special Use Airspace. Because of the complexity of
the airspace, it is not realistic to expect a single point of contact to solve all air-
space coordination issues. Each type of airspace has its own designated unit
that is responsible for controlling, scheduling, and/or coordinating the use of
the designated portion of the NAS. This information is published and avail-
able to the pilots, dispatchers, and system managers whose training includes
procedures for efficiently accessing this information and using it.

13.11 Overview of ICAO/FAA airspace designations
Each national aviation authority determines how it uses the ICAO classifica-
tions within its airspace [14]. In some countries, the rules are modified slightly
to fit the airspace rules and air traffic services that existed before ICAO stan-
dardization. The U.S. adopted a slightly modified version of the ICAO system
on September 16, 1993, when regions of airspace designated according to older
classifications were converted wholesale. The exceptions within the United
States are some Terminal Radar Service Areas (TRSA), which have special
rules and still exist in a few places. The ICAO airspace is now structured and
managed within the United States by the FAA according to the major catego-
ries and subcategories described in the following sections.

13.12 Description of ICAO/FAA airspace classifications
The primary designation of airspace utilized within the NAS is class. There
are seven classes, “A” through “G” (see Figure 13.1). In addition to classes,

Class EClass DClass C
Airspace Class

Class GAGL

AGL
1200

4000
AGL
4000

MSL
1000010000

A
lti

tu
de

 (f
ee

t)

5000

0

15000

18000

60000

AGL
2500

700 AGL

Class B

Class G

Class E

Class A

Figure 13.1 FAA airspace classifications.

348 Richard Colgren

there are a variety of terms utilized to identify operational structures, haz-
ards, and unique areas within the airspace [13]. Controlled and uncontrolled
airspace are generic terms that broadly cover all airspace. These refer to
the level of air traffic control required to operate within the airspace. Most
controlled airspace has specific, predetermined dimensions. Uncontrolled
airspace can be of almost any size. Class F and Class G are the only uncon-
trolled airspace classes, and the only uncontrolled airspace class used in the
U.S. is Class G airspace. Except as noted in the following descriptions, the
FAA normally is the controlling agency for each area of the NAS within the
United States.

13.12.1 Class A airspace

Class A airspace [11,13,14] include airspace from 18,000 feet Mean Sea Level
(MSL) up to 60,000 feet MSL, including the airspace overlying the waters
within 12 nautical miles (NM) of the coast of the 48 contiguous United States
and Alaska (but not Hawaii). All operations within Class A airspace must be
under Instrument Flight Rules (IFR). They are under the direct control of air
traffic controllers. Class A airspace starts at 18,000 feet MSL and is not spe-
cifically charted or designated on commonly used maps. The flight activity
within this airspace is used for the point-to-point transportation of passen-
gers and cargo. All flights in Class A airspace are under positive air traffic
control with communications using defined radio frequencies.

13.12.2 Class B airspace

Class B airspace surrounds the busiest commercial airports [11,13,14]. This is
the most congested airspace and has the most complex mix of aircraft opera-
tions. At its core, it extends from the surface to 10,000 feet MSL. The shape
of Class B airspace looks like an upside-down wedding cake with several
layers. Each layer is divided into sectors with dimensions and shape tailored
to meet local traffic and safety needs. The outer limit of Class B airspace can
extend to 30 nautical miles (NM) from the primary airport. Air traffic control
(ATC) clearance is required to operate in Class B airspace areas. To increase
safety, the airspace is designed to minimize the number of turns aircraft are
required to perform as they descend to an airport, while still enabling other
aircraft to safely transition the area. Class B airspace is depicted on sectional
charts, IFR enroute (low altitude) charts, and terminal area charts. Flight
operations within Class B airspace are generally very complex and require
considerable planning and coordination. Temporary Flight Restriction (TFR)
coordination within U.S. Class B airspace must be carefully coordinated with
the FAA due to a significant impact on the airport. A TFR will generally not
be issued in Class B airspace areas because the area is already a controlled
airspace. Operations must be with ATC clearance.

Chapter thirteen: System of air vehicles 349

13.12.3 Class C airspace

Class C airspace surrounds busy airports which service mid-sized cities with
a large number of commercial flight operations. They also surround some
military airports [11,13,14]. An operating control tower at the primary airport
and radar services are key components of Class C airspace. The overall shape
is also that of an upside down wedding cake with two layers. The inner ring
has a radius of 5 NM and is from the surface up to, but not including, 4,000
feet above airport elevation. The outer ring has a radius of 10 NM and is from
1,200 feet AGL to 4,000 feet above airport elevation. A third ring with a 20
nautical mile radius exists in which ATC provides traffic separation services
to VFR aircraft who voluntarily request this service.

Radio communications must be established with ATC prior to entering
Class C airspace, but specific permission to operate within the airspace is not
required as it is in Class A or Class B airspaces. Class C airspace is depicted
on sectional charts, IFR enroute (low altitude) charts, and in specific termi-
nal area charts. Agency flight operations within Class C airspace should be
viewed as complex and will normally require planning and coordination
similar to that for operations in Class B airspace. TFR requests within Class
C airspace must be carefully coordinated with the FAA.

13.12.4 Class D airspace

Class D airspace is applied to airports with operating control towers, but
where the traffic volume does not meet Class C or Class B airspace standards
[11,13,14]. Traffic usually lacks heavy jet transport activity, but often includes
a complex mix of general aviation, turboprop, and business jet traffic. Radar
service is often available.

Class D airspace encompasses a five nautical mile radius surrounding an
operational control tower from the surface up to, but not including, 2,500 feet
AGL. Class D airspace may have one or more extensions to accommodate IFR
traffic. Where radar service is available, ATC will provide separation service
to IFR traffic and to participating VFR traffic. All traffic must maintain radio
communication with the tower or have prior arrangements for operating
within Class D airspace. Class D airspace is depicted on sectional charts and
on IFR enroute (low altitude) charts. Flight operations must be coordinated
with the control tower. A large amount of civilian and military flight train-
ing occurs in and around Class D airspace.

13.12.5 Class E airspace

Class E airspace exists primarily to assist IFR traffic [11,13,14]. It includes
all airspace from 14,500 feet MSL up to, but not including, 18,000 feet MSL.
It extends upward from either the surface or a designated altitude to the
overlying or adjacent controlled airspace. Radar coverage may or may not

350 Richard Colgren

be available. There are no requirements for VFR communications with ATC.
Class E airspace below 14,500 feet MSL is plotted on sectional charts, termi-
nal area charts, and IFR Enroute Low Altitude Charts. Aviation operations
should be coordinated with the applicable Air Route Traffic Control Center
(ARTCC) or Terminal Radar Approach CONtrol (TRACON). This will help
to avoid conflicts with IFR traffic.

13.12.6 Class F airspace

Class F airspace is designated by the ICAO as uncontrolled airspace [11,13,14].
This airspace classification is not utilized within the United States. Opera-
tions may be conducted under IFR or VFR flight rules. ATC separation will
be provided, so far as practical, to aircraft operating under IFR flight rules.
Traffic information may be given as far as is practical with respect to other
flights. As an example, in Germany, Class F airspace is used for IFR flight in
uncontrolled airspace. In Canada, which generally follows the United States
in its application of airspace classes, the term Class F airspace is used for Spe-
cial Use Airspace; this includes Advisory Airspace and Restricted Airspace.

13.12.7 Class G airspace

Class G airspace is uncontrolled airspace [11,13,14] and includes all airspace
not otherwise designated as A, B, C, D, or E (or F internationally). It is virtually
nonexistent in the eastern United States, but relatively large blocks of Class
G airspace can be found in some areas of the west and Alaska. Operations
within Class G airspace are governed by the principle of “see and avoid.”

13.13 Enroute structures
Enroute structures consist of several routing corridors, essentially “high-
ways in the sky,” utilized by both IFR and VFR traffic [13]. Relatively large
amounts of traffic are concentrated along these routes.

13.14 Low-altitude airways (Victor airways)
Victor airways are the primary “highways” utilized by both IFR and VFR
traffic [13]. They are 8 NM wide and generally range from 1,200 feet AGL up
to, but not including, 18,000 MSL. The airway floor varies to ensure that air-
craft operating on the airway remain clear of ground obstructions and have
the ability to receive the radio signals from the navigational facilities. They
are depicted on sectionals as blue shaded lines with a “V” (hence the name
“Victor”) followed by a number (i.e., V-500, see Figure 13.2).

Chapter thirteen: System of air vehicles 351

13.15 Jet routes
Jet routes serve the same function as Victor low-altitude airways, except that
they are found between 18,000 MSL and to 45,000 MSL [13]. Traffic on a jet
route is always IFR and is managed by air traffic control. Jet routes are shown
on the high altitude charts as a gray line and are represented by the letter “J”
followed by a number.

13.16 VFR flyways
These are general routes for VFR traffic wishing to fly through, or near [13],
Class B airspace. The intent is to provide VFR aircraft with a way to transi-
tion the airspace. An air traffic control clearance is not required to utilize
a flyway. Flyways may be charted on the back of terminal area charts. The
best way to locate a flyway is to ask the ATC facility controlling the Class B
airspace area.

13.17 VFR transition routes
These are similar to VFR flyways and are used to accommodate VFR traffic
transitioning certain Class B airspace [13]. They differ from a VFR flyway in

Figure 13.2 Victor airways.

352 Richard Colgren

that an ATC clearance is required to operate within the route. Also, radar
separation service is always provided. VFR transition routes are identified
by a notation on terminal area charts.

13.18 Air traffic control assigned airspace
Air traffic control assigned airspaces (ATCAA) were established to permit the
continuation of MOA activities above 18,000 feet MSL [13]. From the stand-
point of an aircraft within a MOA, an MOA and an ATCAA are combined
into one airspace, with 18,000 feet MSL acting as an administrative boundary.
Usually, the ATCAA is activated concurrently with the MOA. VFR aircraft
are permitted to enter a MOA, but are not permitted to enter most ATCAAs
because they are not permitted to fly VFR above 18,000 feet MSL. A MOA is
depicted on aeronautical charts, an ATCAA is not depicted.

13.19 VFR waypoints chart program
The VFR waypoint chart program was established to provide VFR pilots
with a supplemental tool to assist with position awareness [13]. The program
was designed to enhance safety, reduce pilot deviations and provide naviga-
tion aids for pilots unfamiliar with an area in or around Class B, Class C, and
special use airspace. The name of a VFR waypoint (for computer entry and
flight plans) consists of five letters beginning with “VP.”

13.20 Special use airspace
The designation special use airspace (SUA) is designed to alert users about
areas of military activity, unusual flight hazards, or national security needs,
and to segregate that activity from other airspace users to enhance safety
[13]. While most SUAs involve military activity, others involve civilian users.
SUAs are established by the FAA. Detailed information regarding the pro-
cess for establishing SUA and other types of airspace is contained in [17]. The
Department of Defense (DoD) flight information publication [18] contains
detailed information about current SUA. There are six different SUAs: (1)
prohibited areas, (2) restricted areas, (3) military operations areas, (4) alert
areas, (5) warning areas, and (6) controlled firing areas.

13.20.1 Prohibited areas

A prohibited area (PA) is established over sensitive ground facilities such
as the White House [13]. The dimensions of the prohibited area vary. All
aircraft are prohibited from flight operations within a prohibited area unless
specific prior approval is obtained from the FAA or the controlling agency.
Prohibited areas are charted on sectionals, IFR enroute charts, and terminal
area charts. They are identified by the letter “P” followed by a number.

Chapter thirteen: System of air vehicles 353

13.20.2 Restricted areas

A restricted area (RA) is established in areas where on-going or intermittent
activities occur which create unusual, and often invisible, hazards to aircraft
such as artillery firing, aerial gunnery, practice bomb dropping, and guided
missile testing [13]. Dimensions of the restricted areas vary depending upon
the needs of the activity and the risks to aircraft. Examples of restricted areas
within the U.S. are shown in Figure 13.3.

Restricted areas differ from prohibited areas in that most RAs have spe-
cific hours of operation, and entry during these hours requires specific per-
mission from the FAA or the controlling agency. In addition, there may be a
separate scheduling agency who must also grant permission. Aviators must
understand that hazardous flight activity is occurring in the RA when it is
active. Restricted areas are depicted on sectionals, IFR enroute charts, and
terminal area charts. They are identified by the letter “R” followed by a num-
ber. The floor and ceiling, operating hours, and controlling agency for each
restricted area can be found in the chart legend.

13.20.3 Military operations areas

A military operations area (MOA) is an area of airspace designated for
military training activities [13]. MOAs were established to contain certain
military activities such as air combat maneuvers, intercepts, etc. Civilian
VFR flights are allowed within a MOA even when the area is in use by the
military. Air traffic control will separate IFR traffic from military activity.
A clearance is not required for VFR operations. Users may encounter high-
speed military aircraft involved in flight training, abrupt flight maneuvers,
and formation flying. Military pilots conducting training within an active

Figure 13.3 Restricted areas within the United States.

354 Richard Colgren

MOA are exempt from the provisions of the Federal Aviation Regulations
prohibiting acrobatic flight within federal airways and control zones. They
are also exempt with respect to the Federal Aviation Regulations for flights
at speeds in excess of 250 knots below 10,000 feet MSL. MOAs have a defined
floor and ceiling which can range up to the floor of Class A airspace (18,000
feet). MOAs are identified by a specific name, the letters “MOA,” and are
charted on sectionals, IFR enroute charts, and terminal area charts. MOA
dimensions, hours of use, and controlling agency can be found in the chart
legend. Restricted Areas within the United States are shown in Figure 13.4.

Note that MOAs can be “stacked” on top of each other. The status of an
MOA can change rapidly and should be checked frequently when flight
operations are occurring. MOAs will have a scheduling agency responsible
for scheduling all military flights intending to use the airspace. If the sched-
uling agency does not have a continuous point of contact, then an alternate
scheduling agency will be designated. Flight Information Publication AP/1A
[18] is used for scheduling MOA information. Communications are normally
established with the controlling agency of any MOA during flight operations
in proximity to a MOA, even if the MOA is not active. Pilots contact air traffic
control prior to entering an MOA to get the most current status information.

13.20.4 Alert areas

An alert area (AA) may contain a high volume of pilot training or an unusual
type of aerial activity (see Figure 13.5). There are no special requirements
for operations within alert areas, other than heightened vigilance [13]. All
operations must be in compliance with FAA regulations. The types of flying
involved could be military, flight testing by aircraft manufacturers, or a high
concentration of flights (i.e., helicopter activity near oil rigs). Alert areas are

Figure 13.4 Military operations areas within the United States.

Chapter thirteen: System of air vehicles 355

depicted by defined areas marked with the letter “A” followed by a num-
ber. Alert area dimensions differ for each area and are depicted on sectional
charts, IFR enroute charts, or terminal area charts.

13.20.5 Warning areas

A warning area (WA) contains the same kind of hazardous flight activity
as a restricted area, but they have a different title since they are located off-
shore over domestic and international waters (see Figure 13.6). Examples of
likely hazards include artillery firing, aerial gunnery, guided missile exer-
cises, and fighter interceptions [13]. Warning areas generally begin three

Figure 13.6 Warning areas within the United States.

Figure 13.5 Alert areas within the United States.

356 Richard Colgren

miles offshore. U.S. Executive Order 10854 [19] extends the application of the
amended Federal Aviation Act of 1958 [20] to the overlying airspace of those
areas of land or water outside the United States beyond the 12-mile offshore
limit. It includes areas where the United States has appropriate jurisdiction
or control under international treaty agreement.

Warning areas overlying the territorial waters of the United States are
under FAA jurisdiction. However, any airspace or rulemaking action that
concerns airspace beyond the 12-mile offshore limit from the United States
requires coordination with the U.S. Departments of Defense and the adja-
cent State. Although VFR operations are permitted within warning areas,
the FAA does not guarantee traffic separation, and aircraft operators weigh
the risks of such operations. Warning areas are represented on sectionals,
IFR enroute charts, and some terminal area charts. They are depicted by a
“W” with a number following it. Dimensions for each warning area can be
determined by consulting the appropriate chart legend.

13.20.6 Controlled firing areas

A controlled firing area (CFA) contains civilian and military activities which,
if not contained, could be hazardous to nonparticipating aircraft [13]. These
include rocket testing, ordinance disposal, small arms fire, chemical dis-
posal, blasting, etc. CFAs are differentiated from MOAs and restricted areas
in that radar or a ground lookout is utilized to indicate when an aircraft
might be approaching the area. All activities are then suspended. The FAA
does not chart CFAs because a CFA does not require a nonparticipating air-
craft to change its flight path. Airspace users may find information about
CFAs from the nearest regional FAA headquarters.

13.21 Military training routes
A military training route (MTR) is designed for low-level, high-speed terrain-
following training missions. These routes are provided for military training
at speeds of more than 250 knots and at altitudes that range from ground
level (surface) to 18,000 feet MSL, though most operations are conducted well
below 10,000 feet MSL. There are more than 500 routes, roughly divided in
half for VFR and IFR operations (see Figure 13.7). They pose flight hazards to
any uncoordinated aviation mission within their perimeters.

A complete description of the MTRs [21] includes the originating/schedul-
ing activity, the hours of operation, the geographical points of each segment,
the altitude limitations for each segment, the route width, special operating
procedures, and the flight service stations (FSS) within 100 NM that have
current information on activities within the MTR. Additional symbols indi-
cate entry/exit points for military aircraft, turning points, departure routes,
etc. In addition to charted route altitudes, additional restrictions or changes
in width may be imposed to avoid sensitive areas or other conditions of use.

Chapter thirteen: System of air vehicles 357

These restrictions are published [21] under the standard operating proce-
dures (SOPs) for each route.

An MTR may have a designated segment where DoD aircraft may per-
form various maneuvers dictated by operational requirements. Aircraft may
freely maneuver within the lateral and vertical confines of the MTR segment
before resuming flight on the remainder of the route. There are also desig-
nated areas within an MTR that indicate alternate exits and entrances. This
accommodates a training mission that might require use of an MOA or an air-
port. Low Altitude Air to Air Training (LOWAT) refers to maneuvers within
MTRs for the purpose of simulating an aerial attack and defense response.

Flight planning should take into account the existence of MTRs and the
in-flight risks they pose. The FSS will have information available on these
activities to include times of scheduled activity, altitudes in use on each
route segment, and route width. Often the FAA will only have the sched-
ule as received from the military the night before. Military pilots check in
prior to entry on IFR MTRs. However, they are not required to check in with
ATC prior to entering VFR MTRs. All MTRs must be scheduled through the
assigned scheduling activity prior to use. Flying an MTR (in excess of 250
knots) without being scheduled is a violation of FAA regulations [12].

13.22 Other military airspace structures
Due to the unique nature of military training operations, training, and test-
ing requirements, other airspace for special military use has been developed
outside the special use airspace (SUA) program [13]. These include: (1) slow
routes (SR), (2) low altitude tactical navigation areas (LATN), (3) local flying
areas, (4) aerial refueling routes, (5) temporary special use airspace (TSUA),

Military Training Routes
Visual routes
Instrument routes

Figure 13.7 Military training routes within the United States.

358 Richard Colgren

(6) cruise missile routes, and (7) national security areas (NSAs). All of the
SUAs and SRs are shown with the MTRs in Figure 13.8.

13.22.1 Slow routes

A slow-speed low-altitude training route or Slow route (SR) is used for mili-
tary air operations flown from the surface up to 1,500 feet above ground level
(AGL) at air speeds of 250 knots or less [13]. Route widths are published in
individual route descriptions [21] and may vary (see Figure 13.9). Slow routes

Visual MTR
Instrument MTR
Warning area
Alert area
Restricted area
MOA
Slow route

Figure 13.8 MTRs, SUAs, and SRs within the United States.

Figure 13.9 Slow routes within the United States.

Chapter thirteen: System of air vehicles 359

technically are not considered MTRs. High-speed aircraft are not allowed
to use slow routes. Generally, these routes are utilized by the U.S. Air Force.
Many of these routes are flown by cargo aircraft, such as C-17s, that use drop
zones for military purposes. There are about 200 slow routes in the United
States. They are represented on AP/1B charts [21]. They are not depicted on
sectionals.

13.22.2 Low altitude tactical navigation areas

A low altitude tactical navigation area (LATN) is a large, clearly defined
geographical area where the U.S. Air Force practices tactical navigation that
typically ranges from the surface to 1,500 feet AGL [13]. These areas are not
depicted on aeronautical charts. Current information concerning LATNs is
available from local U.S. Air Force facilities. These areas are flown at or below
250 knots, when multiple aircraft are not flying the same ground track. MOA
acrobatic type activity is not appropriate for a LATN area.

13.22.3 Local flying areas

Most military facilities develop local flying areas within which they can con-
duct routine, nonhazardous training activity [13]. These areas are normally
developed in conjunction with local FAA controllers and airspace managers.
They are developed so that they will not conflict with other airspace usage
and are locally published. Although use of these areas is generally limited
to assigned units, the airbase airspace managers will make them available to
interested parties. These areas are not depicted on standard published charts
or publications.

13.22.4 Aerial refueling routes

There are over 100 aerial refueling routes utilized by the military over the
United States [13]. The majority of them are located at high altitudes. However,
there are VFR helicopter refueling tracks at low altitudes that do affect opera-
tions at these lower altitudes. The information on the VFR refueling tracks is
located in [21]. There are four types of aerial refueling: (1) tracks (2 to 400 miles
long), (2) anchors (20 to 50 miles long holding pattern associated with a MOA
or RA), (3) special anytime routes (e.g., emergency, military exercises), and (4)
low altitude air refueling (LAARs) routes located below 3,000 feet AGL. Some
VFR refueling routes are designed to be flown at or below 1,500 feet AGL. They
are designed to permit aircraft flying the route to avoid charted, uncontrolled
airports by three NM or 1,500 feet. The track is normally 50 to 100 NM long
and normally four NM in width to either side of a centerline unless otherwise
specified. Aerial refueling may be conducted within an SUA assigned altitude.
This includes both low-altitude (helicopter and fixed wing) refueling as well
as higher-altitude tracks.

360 Richard Colgren

13.22.5 Temporary special use airspace

The U.S. military and the FAA have the ability to create temporary military
operations areas or temporary restricted areas to accommodate the specific
needs of a particular military exercise [13]. This information is available via
either the NOtice To AirMen (NOTAM) system or by direct contact with the
FAA regional headquarters. Temporary military operating areas are pub-
lished in the NOTAM publication. This publication may be purchased on a
subscription basis from the Government Printing Office (GPO) in Washing-
ton, D.C. [22].

13.22.6 Cruise missile routes

Cruise missile operations are conducted on selected IFR military training
routes [13]. They may be flown in excess of 250 knots and below 10,000 MSL.
Cruise missiles may be accompanied by two chase aircraft. The chase air-
craft must always maintain the ability to maneuver the missile out of the
flight path of conflicting traffic. A high-altitude communications aircraft
may be used in conjunction with the cruise missile. It maintains communi-
cations and radar contact with the appropriate ATC facility. Cruise missile
operations are conducted in daylight hours under VFR conditions, with a
flight visibility of at least five miles, maintaining 2,000 feet horizontal and
1,000 feet vertical separation from all clouds. Special charting on sectional
charts designate Unmanned Aerospace Vehicle RouteS (UAVRS).

13.22.7 National security areas

A national security area (NSA; Figure 13.10) is an area where there is a
requirement for increased security [13]. Pilots are requested to voluntarily
avoid flying through the depicted NSA. When it is necessary to provide a
greater level of security and safety, flights in NSAs may be temporarily pro-
hibited under the provisions of the Federal Aviation Regulation Part 99.7 [15].
Since 11 September 2001, special security measures have been implemented
within the United States. Pilots are advised to avoid the airspace above, or
in proximity to, sites such as power plants, dams, refineries, industrial com-
plexes, and military facilities.

13.23 Oceanic and offshore operations
As oceanic air traffic continues to grow and automation improvements are
made, the FAA continues to pursue airspace changes to enhance efficiency
and capacity. The Oceanic and Offshore Operations Program is a program
where the FAA and industry is working to further define regulations and
operations [22].

Chapter thirteen: System of air vehicles 361

13.24 Air defense identification zone
All aircraft entering U.S. airspace from points outside must provide identi-
fication prior to entry [13]. To facilitate early identification of all aircraft in
the vicinity of the U.S. and international airspace boundaries, air defense
identification zones (ADIZs) have been established. Generally for all flights
entering an ADIZ the following are required: (1) a filed flight plan, (2) an
operable two-way radio, and (3) an operable radar beacon transponder with
an altitude reporting capability. An ADIZ is normally located “off shore” or
along U.S. boundaries. After September 11, 2001, an ADIZ has been created
over both Washington D.C. and over New York City.

13.25 Environmentally sensitive areas
There are areas of airspace within the United States that are considered envi-
ronmentally sensitive [13]. The physical presence or noise associated with
aircraft overflight may conflict with the purpose of these areas. Examples

Figure 13.10 Example United States national security area.

362 Richard Colgren

include wilderness areas, national parks, areas with threatened and/or
endangered species, religious areas, wildlife refuges, Native American areas,
and primitive areas. Pilots are voluntarily requested to maintain a minimum
altitude of 2,000 feet above the surface of the following: National Parks,
National Monuments, seashores, lake shores, recreation areas, and National
Scenic River Ways administered by the National Park Service (NPS), National
Wildlife Refuges, Big Game Refuges, Game Ranges and Wildlife Ranges
administered by the Fish and Wildlife Service (FWS), and Wilderness and
Primitive Areas administered by the U.S. Forest Service (USFS).

13.26 Airdrops
Federal regulations prohibit airdrops (by parachute or other means) of per-
sons, cargo, or objects from aircraft on lands administered by the National
Park Service, the Fish and Wildlife Service, or the Bureau of Land Manage-
ment without authorization from the respective agency [13]. Exceptions due
to emergencies and other threats exist in the regulations.

13.27 Special federal aviation regulation
Federal statutes prohibit certain types of flight activity and/or provide alti-
tude restrictions over designated national wildlife refuges, national parks,
and national forests [13]. These special federal aviation regulation (SFAR)
areas are represented on sectional charts.

13.28 Noise abatement procedures
U.S. civilian and Department of Defense airfields may have published noise
abatement procedures within their Class C, D, or E airspace or within transi-
tion routes [13]. They may only be published by the local airport manager
or noise abatement officer. Concentrated VFR traffic along these routes may
result in increased midair potential. When operating out of an unfamiliar air-
port, it is recommended that aviators contact the airport manager to become
familiar with procedures and restrictions. SUA and MTRs also may impose
noise abatement procedures on their users. It is recommended that a DoD
Flight Information Publication [18 or 21], or the using/scheduling agency, be
consulted for specific information.

13.29 Air traffic control communications
Air traffic controllers monitor and direct traffic within a designated volume
of airspace called a sector [23]. Each sector has a separate radio channel
assignment for controllers to communicate with aircraft flying within that
sector. As the amount of air traffic grows, the need for additional sectors
and channel assignments also increases. The ICAO’s present air–ground

Chapter thirteen: System of air vehicles 363

communications system operates in a worldwide, very-high-frequency
(VHF) band reserved for safety communications within the 118 to 137 mega-
hertz (MHz) range. Within this range of frequencies, the FAA currently has
524 channels available for air traffic services. During the past four decades,
FAA has primarily been able to meet the increased need for more channel
capacity within this band by periodically reducing the space between chan-
nels (a process known as channel splitting). For example, in 1966, reducing
the space between channels from 100 kHz to 50 kHz doubled the number
of channels. The second channel split in 1977, from 50 kHz to 25 kHz, again
doubled the number of channels available. Each time the FAA reduced this
space, owners of aircraft needed to purchase new radios to receive the ben-
efits of the increased number of channels. More recent changes, such as the
1995 ICAO adoption of the plan to subdivide the standard 25-kHz separa-
tion by three down to 8.33 kHz, were made to address frequency shortages
in Europe. Well over half of the U.S. airline fleet’s radios are incompatible
with both spacings. FAA can use or assign its 524 channels several times
around the country (as long as channel assignments are separated geo-
graphically to preclude frequency interference). Through channel reuse,
FAA can make up to 14,000 channel assignments nationwide. Additional
frequencies are used internationally. The Global Air Traffic Management
(GATM) subdivides communications channels down to 17 KHz.

13.30 Summary and conclusions
The global airspace provides an excellent example of a system-of-systems
(SoS) concept which has been successfully implemented and operated over
many years. To successfully operate within this airspace, it is necessary for
the aircraft operator to have a degree of understanding of the regulations
and their structure. The regulations themselves prescribe the amount of
training required by aircraft operators based on the type of flight activi-
ties within which they will participate. Regulations also cover operating
standards and flight rules, airspace classes, airways, and routes. The certi-
fication requirements for the aircraft themselves are similarly based on the
type of flight activities for which they are designed and constructed. A com-
plete listing of the regulations would be quite extensive. Within this chapter
we have briefly discussed the general operating and flight rules governing
the operation of aircraft within national and international airspaces. Also
introduced are the procedures to be followed in the initiation, administra-
tive processing, issuance, and publication of rules, regulations, and other
airspace control orders.

Acknowledgments
The author would like to thank the FAA for materials and illustrations pro-
vided for use within this publication.

364 Richard Colgren

References
 1. De Laurentis, D.A., C.E. Dickerson, M. DiMario, P. Gartz, M. M. Jamshidi, S.

Nahavandi, A.P. Sage, E.B. Sloane, and D.R. Walker, A case for an international
consortium on system-of-systems engineering, IEEE Systems Journal, DOI
10.1109/JSYST.2007.904242, pp. 1–6, 2007.

 2. DeLaurentis, D.A., Understanding transportation as a system-of-systems
design, Problem, in Proc. AIAA Aerosp. Sci. Meeting Exhibit, 2005, Article AIAA-
2005-123.

 3. DeLaurentis, D.A. and R. K. Callaway, A system-of-systems perspective for
future public policy, Rev. Policy Res., 21(6): 829–837, 2006.

 4. Nahavandi, S., Modeling of large complex system from system of systems per-
spective, presented at the IEEE SoSE Conf., San Antonio, TX, 2007.

 5. Lopez, D., Lessons learned from the front lines of aerospace, presented at the
IEEE Int. Conf. Syst. Syst. Eng., Los Angeles, CA, 2006.

 6. Wikipedia. 2007. International Civil Aviation Organization. http://en.wikipedia.
org/wiki/International_Civil_Aviation_Organization.

 7. International Civil Aviation Organization. 2007. http://www.icao.int.
 8. Air Transportation Association. 2007. http://www.airlines.org.
 9. National Business Aviation Association, Inc. 2007. http://www.nbaa.org.
 10. Wikipedia. 2007. Air traffic control. http://en.wikipedia.org/wiki/Air_traffic_

control, 1 October 2007.
 11. United States Ultralight Association. 2007. http://www.usua.org.
 12. General Services Administration. 2007. Federal Acquisition Regulation (as

amended). Department of Defense, Washington, DC.
 13. Federal Aviation Administration. 2003. Interagency Airspace Coordination

Guide. FAA, Washington DC.
 14. Wikipedia. 2007. Airspace class. http://wikipedia.org/wiki/Airspace_classes.
 15. U.S. Code of Federal Regulations. U.S. Government Printing Office, Washing-

ton, DC.
 16. Wikipedia. 2007. Controlled airspace. http://en.wikipedia.org/wiki/Controlled

_airspace.
 17. Federal Aviation Administration. 2000. Procedures for Handling Airspace Matters,

FAA Handbook 7400.2. U.S. Department of Transportation, Washington, DC..
 18. U.S. Department of Defense. 2003. Flight Information Publication (FLIP),

AP/1A. U.S. Department of Defense, Washington, DC.
 19. U.S. Executive Order 10854. 27 November 1959. 24 Federal Register 9565, 3 CFR,

1959-1963 Comp., p. 389.
 20. Federal Aviation Act of 1958 (as amended), Washington, DC, December 2003.
 21. U.S. Department of Defense. 2003. Flight Information Publication (FLIP), AP/1B.

U.S. Department of Defense, Washington, DC.
 22. Federal Aviation Administration. 2007. http://www.faa.gov.
 23. U. S. Government Accountability Office. 2002. National Airspace System: FAA’s

Approach to Its New Communications System Appears Prudent, but Chal-
lenges Remain. http://www.gao.gov/htext/d02710.html.

 24. www.freqofnature.com/aviation/aviation_frequencies.html, 1 October 2007.

365

chapter fourteen

System of autonomous
rovers and their applications
Ferat Sahin, Ben Horan, Saeid Nahavandi,
Vikraman Raghavan, and Mo Jamshidi

Contents

14.1 System of autonomous rovers ...366
14.1.1 Stationary sensors and sensor networks 367

14.2 Haptically controlled base robot ... 367
14.2.1 Electrical and mechanical construction368
14.2.2 Haptic control: the haptic gravitational field (HGF) 369
14.2.3 Operation in the system of autonomous rovers 370

14.2.3.1 Communication schemes .. 370
14.2.3.2 Control schemes ... 371

14.3 Swarm robots ... 371
14.3.1 Mechanical construction and components 371
14.3.2 Navigation solution with GPS .. 372

14.3.2.1 The interface ... 372
14.3.2.2 Understanding the parameters 373
14.3.2.3 Calculating the heading angle 373

14.3.3 Sensor fusion ... 374
14.4 Application: robust threat monitoring ... 375

14.4.1 Introduction ... 375
14.4.2 The scenario ... 376

14.5 Swarm of micromodular robots .. 376
14.5.1 Electrical and mechanical construction 376

14.5.1.1 Power layer .. 376
14.5.1.2 Control layer ... 376
14.5.1.3 Ultrasonic layer .. 377
14.5.1.4 Infrared layer .. 377
14.5.1.5 Communication layer .. 377
14.5.1.6 GPS layer ... 377

14.5.2 Communication scheme .. 378
14.5.3 Swarm behavior: the ant colony-based swarm algorithm 378

366 Ferat Sahin et al.

14.5.4 Application: mine detection .. 379
14.5.4.1 Mine hardware ... 379
14.5.4.2 Experimental results ...380

14.6 Conclusion .. 382
References ..383

14.1 System of autonomous rovers
In this chapter a system of autonomous rovers will be presented in the
context of system of systems. In addition, a system of homogenous modu-
lar microrobots will be presented in the context of system of systems. The
chapter starts with the introduction of the components and their roles in the
system of autonomous rovers. Then, each system will be presented focusing
on electrical, mechanical, and control characteristics and their capabilities in
the system of autonomous rovers. Robust data aggregation and mine detec-
tion are then examined as applications of the system of autonomous rovers.

The system of autonomous rovers comprises four components: base robot,
swarm robots, sensors and a threat. Figure 14.1 depicts the physical compo-
nents of the system of rovers. The sensors represent a standalone system able
to measure temperature and pressure and the ability to communicate with
the Base Robot. The threat is spatially dynamic and it is assumed it is detect-
able by the chosen sensors.

In this particular scenario, the temperature local to a particular sensor or
combination of sensors has been increased manually for ease and controlla-
bility of experimentation. Once the sensors have appropriately detected the

Figure 14.1 Components of the system of rovers: base robot, swarm robot, and
sensors.

Chapter fourteen: System of autonomous rovers and their applications 367

threat (temperature change), the base robot is informed of the event and sub-
sequent location. The base robot then informs the swarm robot of the loca-
tion of the threat. Upon receiving the threat information, the swarm robots
navigate to the target location and use onboard sensory systems to validate
the information obtained by the static sensors. Finally, the swarm rovers’
sensor readings are communicated to the base robot for decision making
based on its robust data aggregation algorithm. The base robot, swarm robot,
and microrobots are discussed in the following sections. Sensor units are
discussed here briefly, since we focus on autonomous rovers in this chapter.

14.1.1 Stationary sensors and sensor networks

For the stationary sensor platforms, we are currently using Crossbow’s sen-
sor motes (Mica 2 and Mica2Dot) that are equipped with processor-radio
board and a multisensor board, shown in Figure 14.2. The processor-radio
board consists of a 433-MHz multichannel transceiver and a low-power
Atmel Atmega-128L 4-Mhz processor with 128 KB program flash memory.
The multisensor board has the following sensors: temperature, humidity,
barometric pressure, ambient light, 2-axis accelerometer (ADXL202), and a
GPS receiver.

14.2 Haptically controlled base robot
The haptically teleoperated base robot plays an important role in the pre-
sented system of systems (SoS). The base robot provides onboard compu-
tational power, an advanced suite of sensors, and tracked locomotion for
all-terrain navigation. Given the mechanical and load capabilities of the base
robot, this system provides the capability for initial deployment of the sensor
nodes to desired locations in order to appropriately monitor the target envi-
ronment. The base robot also provides a communication link between each
swarm robot, as well as providing a communication medium between the
swarm robot and sensor network systems. The base robot utilizes its onboard
processing power to transfer communication and commands between
the swarm robot and sensor network systems. In the context of system of

Figure 14.2 Stationary and mobile sensor platforms currently in use/development.

368 Ferat Sahin et al.

autonomous rovers and their applications, the base robot can be considered
as a semistatic base station, which is responsible for autonomous handling
of information between the swarm robots and sensor networks. This is of
course, based on the assumption that the sensor nodes have previously been
placed appropriately in the target environment. Facilitating intuitive naviga-
tion and deployment of sensor nodes, a human-in-the-loop approach was
adopted. Intuitive haptic control methodologies [1] and application-specific
augmentation have been developed [1,2] in order to improve teleoperator
performance in the navigation to and deployment of sensor nodes.

14.2.1 Electrical and mechanical construction

The mobile platform developed in this work is an open-architecture articu-
lated-track rover. The requirements of specific sensory, computation, com-
munication and all-terrain capabilities necessitated the development of a
custom platform for implementation in this system. The developed proto-
type is presented in Figure 14.3(a). The robot’s tracked locomotion offers
superior all-terrain capabilities, including the ability to traverse sand, mud,
and shrubs and to climb rocks and stairs. The locomotion of this platform
was chosen specifically to facilitate traversal of challenging real-world ter-
rain. The haptic attributes of this teleoperation system therefore have the
potential to improve the operator’s control capabilities when attempting to
navigate difficult real-world scenarios.

In order to facilitate task-relevant haptic augmentation, the robot is
equipped with various sensory and control systems. The robot’s onboard
sensors include a GPS for absolute positioning in outdoor environments,
wireless video for a view of the remote environment, ultrasonic range-find-
ing for obstacle detection, 3-axis gyro for orientation, 3-axis accelerometer
for motion capture, and encoders for monitoring the vehicle’s velocity. The
robot’s computation is achieved through an on-board Windows-based lap-
top. This platform was designed specifically to meet the necessary require-
ments in this haptically teleoperated scenario. In order to reduce the required

(b)(a)

Figure 14.3 (a) Base robot and (b) haptic teleoperator control interface.

Chapter fourteen: System of autonomous rovers and their applications 369

communication bandwidth between the mobile platform and teleoperator
control station, the robot processes all of its sensory information locally.
This reduces the amount of communicated data, sending only informa-
tion directly pertaining to the appropriate haptic cues, thus contributing to
improved real-time system responsiveness.

The teleoperator control station provides a medium for human-in-the-
loop control of the remote robotic system. Many teleoperator interfaces
currently used in real-world applications are controlled by a simple joystick-
type device, while an onboard camera provides information from the remote
environment. In order to implement the haptic human-robotic interaction, a
commercial single-point haptic interface is utilized. This haptic device is a
grounded, manipulator-style device offering 6-DOF motion input with 3-DOF
force feedback. The implemented teleoperator control station is designed to
facilitate bilateral haptic human-robot interaction in order to improve perfor-
mance when navigating in a remote environment. The teleoperator can then
receive application-specific information from the mobile robot using both
the visual and haptic sensory modalities.

14.2.2 Haptic control: the haptic gravitational field (HGF)

Controllability is often as important as platform capabilities. The effective-
ness of an immersive operator interface in providing the operator with the
necessary mission-critical information can prove highly advantageous. Con-
sidering the scenario where the operator is required to command the base
robot to a specific location in order to deploy the sensor nodes, the haptic
gravitational field [2] is introduced in the aims of assisting the operator in
such a task. As a basis for the HGF, the following assumptions are made:

 1. The absolute location of the desired goal is known, including direction
relative to the robot.

 2. The environment is so unstructured that determination and evaluation
of obstacles and safe navigational paths is not feasible by an autono-
mous robot, but better performed by the human operator.

In order to deploy the sensor nodes to the desired locations, the overall
objective of the teleoperator is to safely navigate the remote mobile robot
from a start location to the goal or target location. In order to travel to a
known goal location, the HGF can utilize the robot’s capabilities to provide
haptic indication to the teleoperator of direction and distance to the desired
location. The HGF is intended to provide the teleoperator with a force-based
haptic indication of the current distance and direction to the goal location.
This can prove extremely valuable to the teleoperator when the goal location
is not clearly identifiable by visual information alone.

The HGF is demonstrated by Figure 14.4, where xr , yr is the current posi-
tion of the robot, and xg , yg the position of the desired sensor deployment

370 Ferat Sahin et al.

location, with respect to a world coordinate system. Given the current loca-
tion of the rover and a known goal location, the magnitude of the haptic
indicative force (ρ) resulting from the HGF is given by (14.1)

 ρ = + ⋅ − + −()−

k k y y x xg r g r2 3
2 2

1

(() ()) (14.1)

where k2 is the minimum possible haptic force, and k3 is a constant of propor-
tionality relating to the distance to the goal location. The direction to the goal
location ϕ is given by (14.2)

 φ = − −arctan(()/())y y x xg r g r (14.2)

Given the current location of the robot (xr , yr) and a known goal position
(xg, yg), the HGF results in the haptic force vector acting across an imple-
mented haptic control surface [1]. The use of the HGF (including direction-
ality) provides the teleoperator with a method to haptically determine the
direction and distance to a goal location, when visual information may not
be sufficient on its own. Furthermore, the HGF allows the teleoperator to
concentrate their visual sense on local navigation of the challenging terrain,
while inferring global navigation objectives from the haptic information.

14.2.3 Operation in the system of autonomous rovers

Having successfully placed the sensor nodes in the desired locations, the base
robot assumes a semistatic and autonomous role within the system of auton-
omous rovers. This role involves receiving and processing information from
the active sensor network and providing commands to the robotic swarm.

14.2.3.1 Communication schemes
The communication between sensor network and the base robot follows the
star configuration (Figure 14.5). The sensor networks also utilize a centralized
controller physically present within the base robot’s onboard PC. Given this

Deployment
Location

Robot
Robot

Deployment
Location

xg, yg
xg, yg

xr, yr

xr, yr
φ

ρ

Figure 14.4 The haptic gravitational field (HGF) [2].

Chapter fourteen: System of autonomous rovers and their applications 371

configuration, as the number of sensor nodes increases, the required commu-
nication channels only increase proportionally with the number of nodes.

14.2.3.2 Control schemes
As mentioned before, the base robot receives information regarding the detec-
tion of a possible threat from the sensor network. Given the prior knowledge
of the location of any deployed sensor (xn, yn), the base robot receives sensory
information pertaining to the monitored environment. If it is deduced that a
threat is present, then the nature and location (GPS coordinates) of the threat
location are communicated to the robotic swarm.

14.3 Swarm robots
The swarm robotic system comprises a set of identical robots which are rel-
atively smaller in size, inexpensive, and hence less capable than the base
robot. Each robot in the swarm has the same physical and functional charac-
teristics. This section explains about the mechanical and functional charac-
teristics of each of the robots in the swarm.

14.3.1 Mechanical construction and components

The robots use an off-the-shelf robotic mechanical platform. Four DC motors
are coupled to the four wheels of the robot with appropriate gears. Control
to the motors is provided with the help of an H-bridge servo controller. A
field-programmable gate array (FPGA) board with a multiprocessor archi-
tecture is used as a controller. FPGA provides superior open architecture
over conventional microcontrollers, which is desired for typical laboratory
and field research.

A GPS receiver capable of sending data in National Marine Electronics
Association (NMEA) 0183 format is part of the design. The receiver provides
the navigation information to the robot. A magnetic compass that is used
to complement the GPS information is also included in the design. More-
over, additional sensors for navigation and surveillance are included in the
design. A radio modem is connected to provide connectivity to the rest of
the system. A battery with appropriate A-h rating is essentially part of the
system. The hardware block diagram is shown in Figure 14.6.

Sensor Node...n

Base Robot

Sensor Node-3

Sensor Node-2

Sensor Node-1

Figure 14.5 Base robot and sensor network communication—star configuration.

372 Ferat Sahin et al.

14.3.2 Navigation solution with GPS

14.3.2.1 The interface
GPS receivers calculate their position using the trilateration techniques.
The basic position information includes the latitude, longitude, and their
respective hemispheres. Based on those parameters, the receiver calculates
dynamic parameters such as speed, magnetic orientation, etc. The receiver
then formats all the parameters into sentences defined by the NMEA 0183
standard. The NMEA 0183 standard is an industrial standard for commu-
nication between marine electronics devices, and it widely used by GPS
receivers. The most basic and powerful sentence of the NMEA 0183 stan-
dard is GPRMC, the recommended minimum specific GPS/transit data. The
GPRMC sentence provides all the basic navigation information such as lati-
tude, longitude, corresponding hemispheres, UTC fix, course over ground,
speed over ground, and the mode in which the device works. Out of all the
information, latitude, longitude, and corresponding hemispheres are the
original data calculated by the receiver. Course over ground and speed over
ground are calculated based on the rate of change of the read latitude and
longitude data. For autonomous navigation the data necessarily needed are
latitude, longitude, and hemisphere information. Also, we use course over
ground information in our navigation algorithm.

The receivers communicate with a microcontroller/computer through a
standard RS232 serial port or serial port–based USB interface. The sentences
are transmitted in ASCII format through the interface. The NMEA 0183
specification suggests that the communication may be established at 4800
bps, 8 data bits, and no parity, which are the default connection parameters
for all the receivers.

MMP5 Mobile Robot Platform

Actuators

Motor
Drivers

On Board
Surveillance

Sensors

SONAR
Sensors

Magnetic
Compass

GPS
Receiver FPGA

RF Modem

Status LCD

Figure 14.6 Architecture of the robot.

Chapter fourteen: System of autonomous rovers and their applications 373

14.3.2.2 Understanding the parameters
With appropriate hardware and software interfaces the latitude, longi-
tude, their hemispheres, and magnetic orientation data are parsed from the
GPRMC sentence and converted from ASCII format to corresponding abso-
lute number values. The data those are parsed and converted to in numeric
format define the present location of the receiver/robot on the earth and its
magnetic orientation. The destination latitude and longitude information is
obtained from the user through an appropriate interface. The latitude and
longitude distribution on the globe is basically two dimensional with four
quadrants. The latitude and longitude intersect at right angle only at the
intersection of equator and prime meridian. However, we can still consider
that the latitude and longitude intersect at right angles at every point on
the Earth, based on the assumption that the world looks flat to normal eyes
and not elliptical. Moreover, the navigation algorithm discussed is iterative,
which lets the robot recalculate its path until it reaches its destination. The
iterative mechanism nullifies the error that is generated by assuming that the
latitude and longitude intersect at right angles all over the Earth.

14.3.2.3 Calculating the heading angle
The present location and the destination location of the robot are mapped on
a latitude-longitude layout with their respective (latitude, longitude) coor-
dinates. With basic coordinate geometry concepts and trigonometric prin-
ciples, the angle at which the robot should head to reach the destination from
where it is at that point of time is calculated. Let us assume that a robot is to
navigate from location A with (0 N, 0 E) as its (latitude, longitude) to location
B with (3 N, 6 E) as its (latitude, longitude). Assuming that the latitude and
longitude intersects at right angles,

 1. Present location A and destination location B are connected with a
straight line segment.

 2. Applying the coordinate geometry distance formula, Δx and Δy are
calculated.

 3. θ = tan–1 (Δy/Δx) is calculated.

In the above example, both the present and destination locations are on
the first quadrant. If the present coordinate and end coordinate are in any
other quadrant, the theta is correspondingly level shifted. The convention
specified by NEMA for magnetic orientation is to have magnetic north as
0 or 360 degrees, south as 180 degrees, east as 90 degrees, and west as 270
degrees. After calculating the heading angle θ desired, the robot is aligned to
head in the desired angle that leads it to the destination location. The actual
magnetic orientation θ information extracted from the GPRMC sentence is
used to verify if the robot has aligned to the desired heading angle θ.

374 Ferat Sahin et al.

14.3.3 Sensor fusion

It may be interesting to note that the magnetic orientation to a GPS receiver is
a dynamic parameter. Dynamic parameters are calculated from the change
of the latitude and longitude values calculated by the receiver. This suggests
that the position data of the receiver, at each instant of time, are stored in a
first-in first-out (FIFO) buffer array. The location history information is used
to calculate the dynamic parameters. Once the buffer gets filled up with
information, the buffer is replaced with newer location information. If the
speed of the receiver is slower than the rate at which the buffer is replaced,
the dynamic behavior of the receiver cannot be captured. Thus, the receiver
has to be in continuous motion at a speed greater than the minimum speed
required by the receiver to compute the magnetic orientation information and
other dynamic parameters. Typical minimum speed that can be captured is
about two miles per hour (mph). Practical robotic applications demand slow
speed of less than two mph during certain maneuvers. Some common situa-
tions when the speed drops below two mph are when

 1. Encountering obstacles
 2. Evaluating threat
 3. Waiting for a command
 4. Executing a command

In these instances there is a possibility that the receiver on the robot fails
to keep track of the dynamic behavior of the robot, including the orientation
information. Also, during the cold start of the robot the receiver would not be
able to provide magnetic orientation data and other dynamic parameters to
the robot. However, the magnetic orientation data is necessary information
for autonomous navigation. This forces us to complement the GPS receiver
with another device that is capable of determining the magnetic orientation
of the robot even when the robot is stationary. The simplest solution would
be to use a dual-axis magnetic field sensor–based compass that can report
the magnetic orientation information according to the NMEA 0183 specifica-
tion. It may be interesting to note that the geographic north is different from
magnetic north. Normal magnetic compasses work based on the Earth’s mag-
netic field, and they would read North Pole where the Earth’s magnetic north
is present. But, due to the differences in the flow of metals inside the Earth’s
core, the magnetic north has been continuously drifting. Hence, the compass
reading is not accurate. However, the GPS receiver calculates the orienta-
tion of the robot based on the way the latitude and longitude change, and
it calculates the orientation with absolute north pole as reference. The error
caused by the magnetic compass is calculated from the difference between
the compass and GPS receiver readings. The error is compensated from the

Chapter fourteen: System of autonomous rovers and their applications 375

read magnetic orientation data. Thus GPS receiver and magnetic compass
complement each other, forming a dynamic sensor fusion strategy.

14.4 Application: robust threat monitoring
14.4.1 Introduction

As eluded to in the preceding sections, this system was developed in order
to perform threat monitoring of a target environment. Utilizing the distinct
capabilities of the haptically controlled all-terrain base robot, the sensor net-
work, and robotic swarms, the system of systems shown in Figure 14.7 aims
to robustly monitor a target environment for potential threats. Sensors play
the most fundamental and trivial role in any control system. Sensors basi-
cally measure a parameter of the system for further processing. The quantity
and the quality of the measured data are then processed to understand the
current state of the system. With the current state of the system known, there
may be a need to take some corrective actions. This philosophy is fairly com-
mon in robotic systems.

Environment
Information

Wireless
Communication

Command and
Information

Information
and DeploymentSystem of Sensors

Human-Haptic
tele-operation

Master Robot

Human-in-the-loop Tele-operation

Real-world Environment

Robotic Swarm

AutonomousAutonomous

Robotic and Sensor System of Systems

Semi-Autonomous

Figure 14.7 High-level system of systems architecture.

376 Ferat Sahin et al.

14.4.2 The scenario

To illustrate this philosophy in an SoS perspective, we introduce three indi-
vidual systems that have already been explained in Sections 14.1, 14.2, and
14.3. A sensor network system is primarily used to find any exceptional con-
dition that may prevail over the region of interest. The haptically controlled
master robot acts as the central workhorse of the SoS, providing relatively
exceptional physical strength, computational power, and communication
node. Swarm of robots are characterized by their lower cost and relatively
larger area of coverage [3,4].

14.5 Swarm of micromodular robots
In this section, we will present another set of robots in a similar application
with a different hardware and software architecture. They are micromodu-
lar robots designed to study and emulate swarm intelligence techniques and
applications [5,6,7]. These robots will be called GroundScouts throughout
the section. In addition to the hardware and software components of the
robots, the implementation of a robotic swarm as a system of systems and its
application to mine detection problems will also be presented.

14.5.1 Electrical and mechanical construction

GroundScouts are cooperative autonomous robots designed to be both versa-
tile and modular in hardware and software. The overall design was centered
on modularity, creating a robot that could be easily altered to fit the condi-
tions of almost any application. A picture of a GroundScout is shown below
in Figure 14.8.

For modularity, GroundScouts are divided into several independent lay-
ers. The following subsections explore each layer.

14.5.1.1 Power layer
The power layer contains the circuitry needed for power of all the layers,
including the motor drivers for the locomotion layer. The batteries are stored
on the locomotion layer between the wheels.

14.5.1.2 Control layer
The control layer is composed of a Phillips 80C552 as the main controller for
the entire robot. It is connected to all of the other layers via a hardware bus
that runs up the back and the sides of the robot. This creates a mechanical
and electrical means of connecting different layers of the robot. Currently,
we are working on the second generation of GroundScouts, which has ARM
processor and micro operating system.

Chapter fourteen: System of autonomous rovers and their applications 377

14.5.1.3 Ultrasonic layer
The ultrasonic layer has three ultrasonic drivers, which can be arranged in
two different configurations. In the first configuration, the sensors are 120
degrees offset from one another. In the second configuration, all three sen-
sors are in the front of the robot with 60 degrees offset from one another.

14.5.1.4 Infrared layer
The infrared layer can be used for short-range communication from robot to
robot along with trail following, meaning that the robot can be programmed
to follow an IR signal.

14.5.1.5 Communication layer
The communication layer is composed of a PIC microcontroller and a wire-
less transceiver that is capable of transmitting serial data at ranges up to
300 feet. The modulation scheme that the transceiver uses is frequency-shift
keying, meaning that all of the users are sharing the same medium. This cre-
ated the need for an applied medium access control (MAC) protocol that was
developed and described later.

14.5.1.6 GPS layer
The GPS layer was created to allow the robots to be sent off on autonomous
missions and give them a way to get back to the master station by navigating
based on GPS coordinates.

Figure 14.8 Front view of the GroundScouts.

378 Ferat Sahin et al.

14.5.2 Communication scheme

Many different MAC protocols were studied in an attempt to find the one
that was suitable for the robotic swarms. The protocols analyzed included
frequency division multiple access (FDMA), code division multiple access
(CDMA), time division multiple access (TDMA), and polling. The FDMA
separates the users in the frequency domain. This is not suitable with the
current hardware, since the transmit frequency of the transceivers cannot
be changed. The CDMA gives each user a unique code. The message will
only make sense to the user that has the code that the message was modu-
lated with. The current hardware does not have the capability to implement
a CDMA network, since the user has no control over the modulation and
demodulation of the signal. Thus, we concluded that the TDMA was the
most applicable method, since it is easy to implement a “collision-free” pro-
tocol and is suitable for the available hardware.

After implementing this protocol and analyzing it carefully, we discovered
some inefficiencies in this type of network for robotic swarms. For example,
the number of users on the network was fixed, creating a maximum number
of users, and also creating unused slots if all of the users were not pres-
ent. Thus, there was a need to develop an adaptive protocol that allowed the
number of slots to change in accordance with the number of users on the
network. This is referred to as adaptive TDMA [8–11].

The protocol works by creating a time slot at the beginning of each frame
where users can request a transmit slot. The master grants each user a trans-
mit slot. All of the other users on the network hear this and increment their
transmit slot by one, creating a gap for the new user to enter. This also goes
the other way. If no message is sent in a time slot, then the rest of the users
on the network decide that the time slot is no longer in use, and they close
it. The only contention is in the requesting time slot. This is handled by hav-
ing the users generate a random number and wait that many frames before
requesting another slot. Using the adaptive TDMA, swarms can organize
their communication medium based on the number of robots in the swarm.
By adaptively controlling the time slots, robots in a swarm can fully utilize
the available transmission time. Next we discuss the swarm algorithm tested
on the GroundScouts.

14.5.3 Swarm behavior: the ant colony-based swarm algorithm

The swarm behavior to be tested is ant colony behavior. The algorithm is
designed based on short- and long-range recruitment behaviors of the ants
when they are seeking food. The details of the algorithm can be found in
[12,13]. The algorithm is applied to the mine-detection problem [6,7]. The
resulting algorithm is presented in the diagram shown in Figure 14.9. The
boxes represent the three different states that the robot can be in, while the
diamonds represent the transitions that occur.

Chapter fourteen: System of autonomous rovers and their applications 379

The algorithm requires that multiple robots (four in our experiments) be
present around a mine for the mine to be disarmed [8]. This creates the need
for two different messages to be sent from robot to robot. One message indi-
cates to other robots that the mine was found, to mimic a scent. Another mes-
sage tells the other robots that the robot timed out. These two messages allow
the other robots to know exactly how many robots are surrounding the mine.

One thing to note is that, when a robot times out, it turns around com-
pletely and travels fifteen feet before it begins to forage again. This gets the
robot far enough away so that it does not instantly go back to the mine it
was just at. Also, the timeout count is reset when another robot arrives at the
mine. For the experiments, five robots are used to disarm two mines. A mine
must have four robots surrounding it in order to be disarmed. The robots
will start in between the mines at the same location. The mines are placed far
enough apart such that the communication radius of a robot at mine 1 and a
robot at mine 2 does not overlap.

14.5.4 Application: mine detection

As mentioned, the ant colony–based swarm algorithm is applied to a mine-
detection problem. First we will present the systems used as mines, and then
we will present the results of the experiments run in a basketball court.

14.5.4.1 Mine hardware
The mines are composed of a beacon that constantly transmits an infrared
signal that is modulated at 38 KHz in all directions. A picture of the beacon

Yes

Yes

Yes

Yes

Foraging

No

No

No

No

Mine
Found?

Mine
Disarmed?

Mine
Found?

Waiting

Scent
Found?

Scent
Following

Figure 14.9 Flow chart of the implemented swarm algorithm.

380 Ferat Sahin et al.

is shown in Figure 14.10. The signal can be sensed by the robot within a 7-foot
radius. The robots are constantly searching for this signal. As soon as the
signal is detected, the robot knows that it is close to a mine.

Directionality is found by viewing the five sensors that surround the robot.
Early attempts were made to find the sensor with the best signal and assume
that the mine is in that direction. This proved to be difficult, since the sensors
are somewhat omnidirectional, creating a number of sensors having a good
signal and making it difficult to really pinpoint the exact direction of the
mine. It was concluded that finding the direction could be simplified by
looking for the two sensors that have the worst signal. The robot could then
move in the opposite direction, which would be directly toward the mine.
The mine is disarmed using the GroundScout’s communication module. A
communication board was placed on the top of the mine as shown in Fig-
ure 14.10(a). When enough robots are surrounding the mine to disarm it, a
message is sent by the command center to the communication board, telling
it to disarm the mine. The PIC on the communication board will then toggle
a pin that will turn the mine off. The robots will then shift back into the for-
aging state, since signals from the mine will not be available after the mine
is disarmed.

14.5.4.2 Experimental results
The experiments were performed in a gymnasium so that the robots had
plenty of room to work with. A picture of the starting point of the experi-
ment is shown in Figure 14.11.

(b)(a)

Figure 14.10 (a) Outside view and (b) inside view.

Chapter fourteen: System of autonomous rovers and their applications 381

The robots are turned on one at a time, and each is allowed to move about
3 feet before the next robot is turned on. At the start of the algorithm, the
robots are foraging. This is shown in Figure 14.12(a). It clearly shows the
robots randomly searching for mines. The robots near the top of the figure
are beginning to find the first mine. The algorithm used to find the mines
using the infrared sensors will bring the robots toward the mine. The robot
will then move until the back infrared sensors have no signal and the ultra-
sonic sensors are picking up an object that is within 6 inches. Figure 14.12(b)
shows a picture of a robot at the mine.

As soon as the robot reaches the mine, it will begin sending out the recruit-
ment signal to other robots. Since the implementation of the internal coordi-
nate system neglects slippage, over time the robot’s internal coordinates will
begin to become off center. As a robot at a mine sends out the recruitment
signal, other robots that are within the physical distance may not hear this

Figure 14.11 Starting point of the experimental setup.

(b)(a)

Figure 14.12 (a) Robots in the foraging state, (b) robot at the mine.

382 Ferat Sahin et al.

signal because, according to the coordinate system, they are outside of listen-
ing range. Another problem is that sometimes a robot would hear the signal,
but would go to the wrong location, because it is where the robot thinks the
mine is.

As soon as four robots surround the mine, the mine can be turned off. The
robots decide that a mine is turned off by checking their front infrared sen-
sor. If no signal is detected, then the robots conclude that the mine has been
disarmed; they then instantly switch into the foraging stage, which incorpo-
rates obstacle avoidance. This is shown in Figure 14.13.

This section presented a real-time implementation of an ant colony–based
system of swarming robots to the mine-detection problem. In addition, an
adaptive communication network that maximizes the efficiency of the net-
work has also been implemented. It was shown that the algorithm can be
effectively implemented with very few problems.

The robotic swarm, as a system of systems, shows fewer problems than
heterogeneous systems exhibit. First of all, there is no compatibility issue
among the system components, since all the robots have same or similar
components. The robots also have the same software architecture and com-
munication medium.

14.6 Conclusion
This chapter describes two examples of system of systems using autono-
mous rovers. In the first example, the systems were heterogeneous in terms
of their hardware and software, which definitely requires the theory of sys-
tem of systems. In the second example, a swarm of robots is examined as a
system of systems. In this example, the hardware components were similar
or the same for each robot. The advantage of this system of systems was the

Figure 14.13 Robots disarming the mine and leaving.

Chapter fourteen: System of autonomous rovers and their applications 383

common software architecture and known system hardware, even though
some of the robots could have different hardware components because of
the modularity. In both cases, a communication medium is crucial so that the
components of the system of systems can communicate properly and operate
together. By developing a communication medium, system-of-systems con-
cepts can be studied. The common communication medium can be achieved
in hardware and/or software architecture of the communication modules of
each system in the SoS.

References
 1. Horan, B., S. Nahavandi, D. Creighton, and E. Tunstel. 2007. Fuzzy haptic aug-

mentation for telerobotic stair climbing. In the IEEE International Conference on
Systems, Man and Cybernetics. Montreal, QC, pp. 2437–2442.

 2. Horan, B., D. Creighton, S. Nahavandi, and M. Jamshidi. 2007. Bilateral haptic
teleoperation of an articulated track mobile robot. In IEEE International Confer-
ence on System of Systems Engineering, 2007. SoSE ‘07. San Antonio, TX, pp. 1–8.

 3. Azarnoush, H., B. Horan, P. Sridhar, A. Madni, and M. Jamshidi. 2006. Towards
optimization of a real-world robotic sensor system-of-systems. In Proceedings of
World Automation Congress. Budapest, pp. 1–8.

 4. Sahin, F., P. Sridhar, B. Horan, V. Raghavan, and M. Jamshidi.2007. System of
systems approach to threat detection and integration of heterogeneous inde-
pendently operable systems. In IEEE International Conference on Systems, Man
and Cybernetics, Montreal, QC, pp. 1376–1381.

 5. Sahin, F., W. Walter, and K. Kreigbaum. 2003. Design, build and test of modu-
lar mobile micro robots. In Proceedings of IMECE’03 2003 ASME International
Mechanical Engineering Congress and Exposition, Washington, D.C.

 6. Chapman, E. and F. Sahin. 2004. Application of swarm intelligence to the mine
detection problem. In Proceedings of 2004 IEEE International Conference on Sys-
tems, Man and Cybernetics, vol. 6, pp. 5429–5434.

 7. Opp, W. J. and F. Sahin. 2004. An artificial immune system approach to mobile
sensor networks and mine detection. In Proceedings of 2004 IEEE International
Conference on Systems, Man and Cybernetics, vol. 1, pp. 947–952.

 8. Burr, A. G., T. C. Tozer, and S. J. Baines. 1994. Capacity of an adaptive TDMA
cellular system: comparison with conventional access schemes. In 5th IEEE Con-
ference on Personal, Indoor, and Mobile Radio Communications, vol. 1, pp. 242–246.

 9. Kanzaki, A., T. Uemukai, T. Hara, and S. Nishio. 2003. Dynamic TDMA slot
assignment in ad hoc networks. In International Conference on Advanced Informa-
tion Networking and Applications, pp. 330–335.

 10. Papadimitriou, G. and A. Pomportsis. 1999. Self-adaptive TDMA protocols for
WDM star networks: A learning-automoto-based approach. IEEE Photonics
Technology Letters 11:1322–1324.

 11. Stevens, D. and M. Ammar. 1990. Evaluation of slot allocation strategies for
TDMA protocols in packet radio networks. In IEEE Military Communications
Conference, 1990, vol. 2, pp. 835–839.

 12. Kumar, V., F. Sahin, and E. Cole. 2004. Ant colony optimization based swarms:
implementation for the mine detection application. In Proceedings of 2004 IEEE
International Conference on Systems, Man and Cybernetics, vol. 1, pp. 716–721.

384 Ferat Sahin et al.

 13. Kumar, V. and F. Sahin. 2003. Cognitive maps in swarm robots for the mine
detection application. In Proceedings of 2003 IEEE International Conference on Sys-
tems, Man and Cybernetics, vol. 4, pp. 3364–3369.

385

chapter fifteen

Space applications of
system of systems
Dale S. Caffall and James Bret Michael

Contents

15.1 Introduction ...385
15.1.1 Manned space exploration ..386

15.1.1.1 Orion crew capsule ..386
15.1.1.2 Aries launch vehicles .. 387
15.1.1.3 Lunar Surface Access Module 387
15.1.1.4 Earth Departure Stage... 387

15.1.2 Unmanned space exploration ...388
15.1.2.1 Mars Science Laboratory ...388
15.1.2.2 Juno ..388
15.1.2.3 James Webb Space Telescope 389

15.2 System of systems ... 389
15.2.1 Manned space exploration .. 389

15.2.1.1 System-of-system architecture 390
15.2.1.2 Component framework ... 392
15.2.1.3 Contract interfaces ... 393
15.2.1.4 System-of-systems specification 394

15.2.2 Unmanned space exploration ... 396
15.2.2.1 Distributed systems ... 396
15.2.2.2 Dependability ... 399

15.3 Conclusion .. 401

15.1 Introduction
Space . . . the Final Frontier. These are the voyages of
the starship Enterprise. Its five-year mission: to explore
strange new worlds, to seek out new life and new civi-
lizations, to boldly go where no man has gone before.

386 Dale S. Caffall and James Bret Michael

How many of us heard these words and dreamed of standing alongside
Star Trek’s Captain James T. Kirk and First Officer Mr. Spock to explore new
worlds? Interesting enough, Chief Engineer Commander Scott performs
countless technological miracles as he saves his beloved USS Enterprise and
crew from certain destruction; however, Scotty never mentions the miracle
of the Enterprise as a wonderful system of systems. Could it be that future
engineers solved all the problems of system of systems? Could it be that
Scotty never encountered problems with the system of systems comprising
the Enterprise, freeing him up to devote his time on advancing the interplan-
etary communications, warp engine, phaser, transporter, deflector shield,
and other systems of the Enterprise? Apparently not, at least as evidenced by,
for instance, the emergent behavior of the Enterprise as it interacts with a (fic-
titious) legacy unmanned scientific probe named Voyager 6, whose onboard
systems have been reconfigured and augmented by an alien race. In this
chapter, we discuss the application of the system-of-systems technology for
the development of a space foundation that, indeed, may lead to the Federa-
tion and star ships.

While many people almost exclusively think of space exploration as the
Shuttle Orbiter that has captured worldwide interest for over twenty-five
years, space exploration is multifaceted. The National Aeronautics and Space
Administration (NASA) has a extraordinary history of space exploration to
include the Rovers that continue to explore Mars, space telescopes that can
see into deep space, a human-inhabitable space station that orbits the Earth,
unmanned spacecraft that explore the Sun and the planets in our solar
system, and the unforgettable lunar exploration that began on July 20, 1969,
as Commander Neil Armstrong stepped onto the Moon’s surface.

So, what is the relationship of space exploration with a system-of-sys-
tems concept? Well, let us first consider space exploration missions that are
planned for the next couple of decades.

15.1.1 Manned space exploration

For future manned exploration, NASA established the Constellation Program
that will eventually lead to manned spaceflights to Mars. Prior to reaching for
the goal of manned exploration of Mars, NASA identified intermediate goals
of docking with the International Space Station and returning to the Moon
for exploration and establishing human-habitable lunar laboratories. To sup-
port the achievement of these goals, the Constellation Program will produce
a number of products including the Orion crew capsule, Aries launch vehi-
cles, the Lunar Surface Access Module, and the Earth Departure Stage.

15.1.1.1 Orion crew capsule
The Orion crew capsule which will consist of two main components: a crew
module, which will be similar to the Apollo Command Module and capable

Chapter fifteen: Space applications of system of systems 387

of holding four to six astronauts, and a cylindrical service module that will
contain the primary propulsion systems and consumable supplies.

The Orion crew capsule will be propelled into space by the Aries I rocket,
which will consist of a solid rocket booster that is connected at its upper end
to a new liquid-fueled second stage powered by an enhanced J-2X rocket
engine. The Aries I rocket will have the capability to lift more than 55,000 lbs
to low Earth orbit.

15.1.1.2 Aries launch vehicles
The Aries V rocket will transport the Lunar Surface Access Module and the
Earth Departure Stage into space. The Aries V rocket will have the capability to
carry nearly 290,000 and 144,000 lbs to low Earth and lunar orbit, respectively.

15.1.1.3 Lunar Surface Access Module
The Lunar Surface Access Module will transport astronauts to the lunar sur-
face. It consists of two main components: an ascent stage, which houses the
four-person crew, and a descent stage, which has the landing legs, the major-
ity of the crew consumables, and scientific equipment.

15.1.1.4 Earth Departure Stage
The Earth Departure Stage will be the main propulsion system that will send
the Orion crew capsule that is coupled with the Lunar Surface Access Module
from low Earth orbit to the Moon. The Earth Departure Stage is propelled by
a J-2X main engine fueled with liquid oxygen and liquid hydrogen.

Once in orbit, the Orion crew capsule will dock with the orbiting Earth
Departure Stage carrying the Lunar Surface Access Module. Once mated
with the crew capsule, the departure stage fires its engine to achieve escape
velocity, and the new lunar vessel begins its journey to the Moon. The Earth
Departure Stage is then jettisoned, leaving the crew module and Lunar Sur-
face Access Module mated. Upon achieving lunar orbit, the four astronauts
will transfer to the lunar module and descend to the Moon’s surface. The
crew module remains in lunar orbit until the astronauts depart from the
Moon in the lunar vessel, rendezvous with the crew module in orbit, and
return to Earth.

Let us consider the system of systems that the Constellation Program is
developing. There will be the major systems as described above: Orion crew
capsule, Aries I rocket, Aries V rocket, Lunar Surface Access Module, and
the Earth Departure Stage. To complete this system of systems, there will
be a ground control system at the Kennedy Space Center launch site as well
as mission control at Johnson Space Center. Additionally, there will be the
International Space Station as well as lunar outposts. For the Mars mission,
there will be the communications network that will reach from Earth to the
satellites that orbit Mars.

388 Dale S. Caffall and James Bret Michael

15.1.2 Unmanned space exploration

For unmanned space exploration, NASA has a multitude of programs that
will support deep space exploration. Rather than discussing all of the pro-
grams, we will consider three major programs that are representative of all
the unmanned space flights: Mars Science Laboratory, Juno, and the James
Webb Space Telescope.

15.1.2.1 Mars Science Laboratory
The Mars Science Laboratory is a rover scheduled to launch in September
2009 and perform a precision landing on Mars in the summer of 2010. This
rover will be three times as heavy and twice the width of the Mars Explo-
ration Rovers that landed in 2004. The Mars Science Laboratory will have
higher clearance and greater mobility than any previous rover sent to Mars,
traveling a distance of five to twenty kilometers from its landing site. It will
carry more advanced scientific instruments than any other mission to Mars.
While NASA will develop many of these instruments, the international com-
munity will provide a number of instruments—complicating the integration
challenges within this system of systems.

After reaching the surface of the red planet, Mars Science Laboratory will
have a primary mission time of one Martian year (approximately 687 Earth
solar days) as it explores with greater range than any previous Mars rover.
The Mars Science Laboratory will analyze dozens of samples scooped up
from the soil and drilled powders from rocks. It will investigate the past or
present ability of Mars to support life.

15.1.2.2 Juno
Juno is a NASA mission to Jupiter and is scheduled to launch in 2013. At arrival
at Jupiter in 2018, the spacecraft will perform an orbit insertion burn to slow
the spacecraft enough to allow capture into Jupiter orbit. The spacecraft will
then orbit Jupiter about its poles with an eleven-day orbital period. Its mission
will conclude in 2019, after completing thirty-two orbits around Jupiter.

The spacecraft will be placed in a polar orbit in order to study the planet’s
composition, gravity field, magnetic field, and polar magnetosphere. Once
Juno enters into its orbit around Jupiter, infrared and microwave instruments
will begin to measure the thermal radiation emanating from deep within
Jupiter’s dense atmosphere. These observations will complement previous
studies of the planet’s composition by assessing the abundance and distribu-
tion of water and, therefore, oxygen.

Juno will also be searching for evidence to help scientists understand how
Jupiter formed. Specific questions that relate to the origin of planets in our
solar system include the determination of whether Jupiter has a rocky core,
the amount of water present within the deep atmosphere, and how the mass

Chapter fifteen: Space applications of system of systems 389

is distributed within the planet. Juno will also study Jupiter’s deep winds
(which can reach wind velocities of 600 km/h).

15.1.2.3 James Webb Space Telescope
The James Webb Space Telescope is a large, infrared-optimized space
telescope, scheduled for launch in 2013. It will find the first galaxies that
formed in the early Universe, connecting the Big Bang to our own Milky
Way Galaxy. It will peer through dusty clouds to see stars forming plan-
etary systems, connecting the Milky Way to our own Solar System. NASA
will design the James Webb Space Telescope to work primarily in the infra-
red range of the electromagnetic spectrum, with some capability in the
visible range (0.6 to 27 µm in wavelength).

The James Webb Space Telescope is an international collaboration between
NASA, the European Space Agency, and the Canadian Space Agency. It will
have a large mirror that will be 6.5 m in diameter and a sunshield the size
of a tennis court. Both the mirror and sunshade will not fit onto the rocket
fully open, so both will fold up and open only once it is in outer space. The
James Webb Space Telescope will reside in an orbit about 1.5 million km
from Earth.

There will be four science instruments on the James Webb Space Tele-
scope: a near-infrared (IR) camera, a near-IR multi-object spectrograph, a
mid-IR instrument, and a tunable filter imager.

15.2 System of systems
With this background, let us examine potential system-of-systems issues in
manned and unmanned space exploration.

15.2.1 Manned space exploration

The system-of-systems issues will appear in the different phases of flight. In
the launch and ascent phase, our concerns will be primarily the system of
systems that includes Orion crew capsule, Aries rockets, ground control sta-
tion at the Kennedy Space Center, and the mission control station at the John-
son Space Center. After entering low Earth orbit and under guidance from
mission control at Johnson Space Center, the Orion crew capsule will connect
with the International Space Station to provide supplies. When the mission
calls for going to the Moon, the Orion crew capsule will connect with the
Earth Departure Stage that contains the Lunar Surface Access Module and
depart for the Moon under guidance from mission control. In lunar orbit, the
Lunar Surface Access Module will descend to the Moon and return after the
astronauts complete their lunar missions. The Orion crew capsule will then
return to Earth under guidance from mission control.

390 Dale S. Caffall and James Bret Michael

Given that there may be many system-of-systems issues for the manned
flight, we will consider system-of-system architecture, component frame-
work, components, contract interfaces, specifications, distributed systems,
and dependability.

15.2.1.1 System-of-system architecture
System engineers can mistakenly believe that “stick-and-circle” and other
cartoon-like diagrams fill the bill for documenting the architecture of a
system. While this is a questionable approach for a single system, it is an
atrocious approach for a system of systems. Before we continue with the dis-
cussion, let us define architecture and design.

Architecture:•	 The collection of logical and physical views, constraints,
and decisions that define the external properties of a system and pro-
vide a shared understanding of the system design to the development
team and the intended user of the system
Design:•	 The details of planned implementation which are defined,
structured, and constrained by the architecture

In these definitions, there is an implied responsibility of the system archi-
tect to collaborate with the development team and the intended system user
to document the architecture. While numerous tools, artifacts, and method-
ologies exist on the market to support the system architect, the content and
usefulness of the architecture will be dependent on the skill of the architect
to select the appropriate tools, artifacts, and methodologies that bring about
a shared understanding of the system design. One can argue that the shared
understanding of the system design should be the primary purpose of the
specification of the architecture.

Critical interactions within system software can increase as the complexity
of highly interconnected systems increases. In complex systems of systems,
these possible combinations are practically limitless. System “unravelings”
have an intelligence of their own as they expose hidden connections, neu-
tralize redundancies, and exploit chance circumstances for which no system
engineer might plan. A software fault at runtime in one module of the sys-
tem software may coincide with the software fault of an entirely different
module of the system software. This unforeseeable combination can cause
cascading failures within the system of systems.

As architects make an architectural decision upon which all future design
decisions will be influenced, the architecture becomes irreversible at that
point; that is, an architecture that is hard to change is, for all intents and
purposes, irreversible. The role of the architect is to find ways to eliminate
irreversibility in designs. The architect should ensure that today’s decision
does not limit the flexibility of design decisions tomorrow.

For future manned space exploration, we must consider a system-of-sys-
tems architecture that allows systems and components to dynamically enter

Chapter fifteen: Space applications of system of systems 391

and exit the system of systems without disruption to the system of systems,
that is, a reconfigurable plug-and-play system.

As the Aries rocket launches, the Ground Control passes the command
and control over to Mission Control; however, the Orion crew capsule and the
Aries rocket have decision-making mechanisms. The Guidance, Navigation,
and Control (GN&C) component in the Orion crew capsule provides flight
control, guidance, navigation, sensor data processing, and flight crew display.
Mission Control monitors the rocket following launch and can command a
mission abort that would hurl the Orion crew capsule out of harm’s way.

The GN&C component will consist of two operational modes: auto and
manual (control stick steering). In the automatic mode, the primary avion-
ics software system will allow the onboard computers to fly the rocket—the
flight crew simply selects the various operational sequences. The flight crew
may control the rocket in the control stick steering mode using hand controls
such as the rotational hand controller, translational hand controller, speed
brake/thrust controller, and rudder pedals.

During launch and ascent, most of the GN&C commands will be directed
to gimbal Aries’ main engines and solid rocket boosters to maintain thrust
vector control through the rocket’s center of gravity at a time when the
amount of consumables is changing rapidly. In addition, the GN&C will
control throttling for maximum aerodynamic loading of the rocket during
ascent and maintain an acceleration of no greater than 3 g during the ascent
phase. To circularize the orbit and perform on- and de-orbit maneuvers, the
GN&C will command the orbital maneuvering system engines. At external
stage separation, on orbit, and during portions of entry, GN&C will control
commands to the reaction control system. In atmospheric flight, GN&C will
control Orion’s aerodynamic flight control surfaces.

One of the major participants in bringing about the desired emergent
behaviors while suppressing the undesired emergent behaviors in the system
of systems will be the system-of-systems architect. In creating the architec-
tures for manned space exploration systems, the architects should consider
three aspects of the desired behavior: (1) what we want the system of systems
to do, (2) what we do not want the system of systems to do, and (3) what we
want the system of systems to do under adverse conditions. While the first
consideration is oftentimes the foremost focus of architects, it is imperative
that the system-of-systems architect for manned space exploration consider
all three aspects. Undesired emergent behaviors that appear as the rocket
ascents into low Earth orbit could have devastating consequences such as the
sudden loss of control over the rocket’s flight into space—a tumbling rocket
that may not have the ability to abort.

Given all the automated as well as human decisions in space flight, the
services provided and consumed must be deliberately defined. There will be
a number of active participants in the command and control of the rocket,
so the system-of-systems architect must identify service providers, service
consumers, and mutually exclusive business rules to ensure the appropriate

392 Dale S. Caffall and James Bret Michael

command and control commands are provided by the correct components
and consumed by the correct components.

15.2.1.2 Component framework
We believe that a best practice for evolving a system of systems is to compose
the system through the integration of components. For this discussion, we
define a component as a unit of composition with contractually specified
interfaces and explicit context dependencies.

Component-based engineering is the design and construction of a system
by integrating software components, interfaces, contracts, and a component
framework. The concept is to employ portions of legacy software that contain
the desired functionality as expressed in the software architecture, shape
the legacy software into units of composition, develop new components as
required, and integrate the components into a component framework to real-
ize the desired system functionality.

The foundation for developing and designing a system using component-
based engineering is the component framework. It is the “glue” that binds
the components to do the desired work that is specified in the architecture,
in addition to serving as a guide and orchestration mechanism for system
integration and interoperability. The component framework depicts where a
component resides and its interface to other software.

The role of a component framework at the control level is that of enforcer:
components are compelled to behave in accordance with the methods
controlled by the framework, such as the inclusion of temporal invariants to
enforce system timing and sequencing constraints. To increase the capabil-
ity of a system of systems, we will add other components to the framework
that provide additional functionality. To increase the precision of a system
of systems, we could replace the current components with new components
that contain more precise algorithms.

In developing the architectural views with respect to components, we
might consider the following properties of components:

Provide services through well-specified interfaces•	
Encapsulate state and behavior so that neither is visible to the compo-•	
nent framework
Rely on the component framework to initialize and communicate with •	
other components

Recall the major components of the system of systems in the manned space
exploration: Orion crew capsule, Aries I rocket, Aries V rocket, Lunar Surface
Access Module, Earth Departure Stage, Ground Control at the Kennedy Space
Center launch, Mission Control at Johnson Space Center, International Space
Station, lunar outposts, and the communications network that will reach from
Earth to the satellites that orbit Mars.

Chapter fifteen: Space applications of system of systems 393

Each of these components has responsibilities that are independent of the
other components, yet each component is a provider and consumer of ser-
vices. In our component framework for manned space exploration, we want
both the minimum set of interfaces to realize the provided and consumed
services and the ability to replace a component in the framework without
disrupting operations of the other components.

15.2.1.3 Contract interfaces
Tight coupling tends to make component maintenance and reuse much
more difficult, because a change in one component automatically necessi-
tates changes in others. Similarly, tight coupling makes extra work when an
application has to adapt to changing business requirements, because each
modification to one application may force developers to make changes in
other connected applications.

We argue that a system of systems should employ the concepts of design
by contract in the specification and design of its interfaces. Design by con-
tract is a formalized way of writing comments to incorporate specification
information into the software to express the requirements for the compo-
nent. The contracts describe the assumptions the engineer makes about the
system under development. The idea behind design by contract is that soft-
ware entities have obligations to other entities based upon formalized rules
between them. We create a functional specification (i.e., contract) for each
component in the system whether it is salvaged code from legacy software or
developed as new code. Thus, the execution of the software is the interaction
between the component framework and the various components as bound
by these contracts.

For example, if an engineer assumes that a given variable will never
receive a null or negative input, then the developer should include this infor-
mation in the contract. Additionally, if an engineer writes a piece of code that
is always supposed to return a value greater than 100, he should add this
information in a contract so the developers working with the other parts of
the application know what to expect. These contracts describe requirements
such as:

Conditions that must be satisfied before a method is invoked•	
Results that need to be produced after a method executes•	
Assertions that a method must satisfy at specific points of its execution•	

A contract can specify three types of constraints in the interface. A con-
tract specifies the constraints that the component will preserve—an invari-
ant. The contract specifies the constraints upon the component framework
(i.e., a precondition). Additionally, the contact specifies the constraints upon
a component with respect to what it returns to the component framework
with respect to the input to the component operation (i.e., a postcondition).

394 Dale S. Caffall and James Bret Michael

15.2.1.4 System-of-systems specification
The tendency in specifications is to document the “thou shalts” of specific
system functions, design to the “thou shalts” with modifications to accom-
modate the development, and field a system that little resembles the collec-
tive “thou shalts” and, more importantly, contains limited user utility.

Capturing the desired system-of-systems behavior in the traditional natu-
ral language documents is a complex issue, given that the legacy systems in
the system of systems have a combination of existing known and unknown
system behaviors. Typically, the system-of-systems specification is reduced
to a table of information exchange requirements that define the messaging
that passes from one system to another.

As a result of a system-of-systems development strategy of interconnect-
ing systems, the fielded system of systems frequently demonstrates unde-
sired system behaviors under operational conditions. Consequently, the user
is frequently irritated at the undesirable distributed-system behaviors that
a system of systems may exhibit, such as halted processes without recovery
and disparate versions of same-source data. Additionally, the system of sys-
tems may require dependability considerations, yet system architects and
system engineers can experience a significant degree of difficulty in assess-
ing the dependability of a system of systems.

The development community continues to fail in capturing and achieving
the desired behavior of the system. Additionally, the development commu-
nity continues to invest a significant amount of the program budget in sys-
tem rework to correct deficiencies in specifications. Unfortunately, we seem
to accept these facts and are resigned to repeat the errors of our predecessors.
We continue on with the same bad practices of the past. As we have heard
time and again, lunacy is defined as doing the same thing over and over
while expecting a different result.

One tool for specifying and implementing the desired system behavior is
formal methods. A system engineer can use formal methods in the defini-
tion, validation, and verification of system specifications. Additionally, one
can implement the formal specifications with formalisms in the software.
Formal methods can complement traditional techniques such as testing and
can help developers improve the degree of trustworthiness in the acquisition
of space systems.

Conventional software development methods may not be suitable for the
development of dependable, safety-critical systems. In safety-critical systems,
system faults could prove fatal to human life or lead to loss of valuable physi-
cal assets. With the use of formal methods, developers can analyze formalized
statements and the associated impacts in a repeatable manner. Formal meth-
ods help engineers test a significant number of test cases and support analy-
sis that can be checked by verified model checkers. In operational software,
the use of formal methods can significantly enhance the ability to catch and
handle runtime errors.

Chapter fifteen: Space applications of system of systems 395

We propose the use of assertions in the development of formal specifica-
tions. Assertions can help system engineers find defects in specifications and
designs earlier than they would otherwise find errors and greatly reduce
the incidence of mistakes in interpreting and implementing correct require-
ments and designs. Additionally, the development and verification of formal
specifications can support the development of error-handling specifications
to appropriately manage runtime errors and logic breaks.

The use of assertions can significantly reduce the errors introduced in
specifying system behavior. Assertions can considerably increase the level
of clarity in the assumptions and responsibilities of system behavior, and
reveal errors such as logic omissions and conflicting logic-statements. Asser-
tions can catch common interface faults (e.g., processing out-of-range or
illegal inputs) by precisely asserting the legal interface values for variables
passed in through an interface.

In the specification of the component framework, components, and inter-
faces, we recommend that the control and coordination features be specified
in the component framework and the method of computation be specified in
the component. We want to specify the contract between the interface and
the component framework in the interface. Thus, the interface is specified as
an independent entity rather than a portion of either the component frame-
work or the component.

In the specification of the component framework, engineers must specify
more than the desired functionality of the component. Included in the specifi-
cation should be (1) the required response time of a component’s computation
that supports the desired behavior of the system, (2) the required precision of
the result to ensure the matching of precision between the component frame-
work and a component, (3) the required throughput of the data streams to
ensure that data loss does not occur as a result of a throughput mismatch, (4)
required protocol and formatting to ensure the matching of data and fields
during data transfer, (5) legal values for inputs and outputs, and (6) data dic-
tionary to include the specification of the units of measure in the component
framework.

In the specification of the component, one must specify more than the
required input parameter from the component framework. Included in the
specification should be (1) time to complete a computation, (2) the required
precision of the input to ensure that matching of precision between the com-
ponent framework and a component, (3) memory requirements to ensure
sufficient memory is designed into the software architecture, and (4) data
dictionary to include the specification of the units of measure in the compo-
nent framework.

Since we used examples from the manned space exploration in the archi-
tecture discussion to include the component framework, components, con-
tract interfaces, and specification, we will use examples from unmanned
space exploration for the distributed system and dependability discussions.
We should keep in mind that the system-of-systems principles previously

396 Dale S. Caffall and James Bret Michael

discussed for the development of the system of systems for unmanned space
exploration systems and the discussion of distributed systems and depend-
ability for unmanned space exploration are applicable to the manned space
exploration.

15.2.2 Unmanned space exploration

The system-of-systems issues will appear in the different phases of flight.
We can divide the unmanned space exploration into five major phases:

 1. Launch and ascent
 2. Travel-to-space exploration objective
 3. Preparation for operations
 4. Landing (for the Mars missions)
 5. Data collection

The components in the system of systems for unmanned space explora-
tion will be the payload capsule that contains the rovers or space observa-
tion platforms, Aries rockets, Ground Control, Mission Control, rovers, space
observation platforms, and the space communications network.

In the launch and ascent phase, our concerns will be primarily the system
of systems that includes the payload capsule, Aries rockets, Ground Control,
and the Mission Control. After reaching space, the rocket will set course
for its space objective. Upon reaching its space objective, space observation
platforms will prepare for mission execution. For Mars rovers, the payload
capsule will prepare for descent onto the surface of Mars.

While tremendously talented engineers can realize the functionality and
dependability of the individual components, engineers must consider the
principles previously described to construct the unmanned space explora-
tion system of systems. To ensure correct and dependable operations, engi-
neers must address the properties of distributed systems.

15.2.2.1 Distributed systems
It can be easy to connect a number of computers together with a given means
of communications; however, it is significantly harder to cause the software
in that gang of interconnected computers to perform and behave as desired.
Leslie Lamport offered the following observation as a result of a continuing
problem in a distributed system: “A distributed system is one in which the
failure of a computer you didn’t even know existed can render your own
computer unusable.” Lamport’s observation describes the tendency within
government acquisition organizations to equate connecting together a group
of computers as effectively engineering a distributed system. Before we
define what we require in a distributed system for a control element, we
should define precisely what we mean by a distributed system.

Chapter fifteen: Space applications of system of systems 397

For this discussion, we define a distributed system of systems as a system
that has multiple processors that are connected by a communications struc-
ture. We will not include any desired characteristics of a distributed system
of systems in the definition, given that the properties of an operational sys-
tem of systems may include undesired behaviors; however, the system is a
distributed system of systems nonetheless.

Key characteristics of an unmanned space exploration system of systems
might include the following: (1) a distributed network, (2) an operational
environment that includes Earth, space, and Mars, (3) management of con-
current rover activities, (4) automated decision making regarding the execu-
tion of experiments or rover movement, (5) stringent requirements for high
levels of dependability of the systems’ rovers that are on a distant planet
with no local technical support.

We should consider the ability to detect failures in the distributed sys-
tem to satisfy the seven dependability properties listed in Section 15.2.2.2. A
crashed rover or a crashed Mars satellite is not easily distinguishable by Mis-
sion Control without careful design of a failure-detection solution in the dis-
tributed system. Without a failure-detection solution, Mission Control might
wait forever for a message to arrive from a failed or lost rover. We should
consider the incorporation of error-detection and error-handling methods
to handle rover and satellite failures. For example, we could employ error-
correction coding techniques to correct a designed number of transmission
errors in a message. We could employ a time-out scheme that allows a rover
to wait for a specified time before resending a message to Mission Control.
We could turn to redundancy of either software or hardware to increase
the opportunities for successful operations. For such exceptions, engineers
should develop an appropriate error-handling technique to overcome a
failed component.

Another problem among distributed components is access to the critical
section of a distributed system. For the unmanned space exploration system
of systems, we will consider the critical section to be the space observation
platform and the rovers. Recall that a component can fulfill a single task-
ing request from internal controls or external components at any given time.
The problem is one of mutual exclusion. The solution to the mutual exclu-
sion problem must satisfy the properties of safety (i.e., two processes cannot
have simultaneous access to the critical section), liveness (i.e., every request
to access the critical section should be granted eventually), and fairness (i.e.,
requests to access the critical section should be granted in the order that
these requests are made).

For safety reasons, it is not desirable to have the situation in which mul-
tiple control elements are attempting to realign a sensor on a space observa-
tion platform or direct rover movement on Mars.

For liveness reasons, it is desirable to have a controlling element eventu-
ally access the critical section as requested. Given that a sensor has redi-

398 Dale S. Caffall and James Bret Michael

rected its field of regard to satisfy the request of an external component, it is
not desirable to break that access until the original request is fulfilled.

For fairness reasons, it is desirable to grant requests in the order that the
control elements generate the requests to access the critical section. Each con-
trol element has an essential mission to perform, so each request must be
granted fairly to achieve maximum mission success.

There are numerous algorithms that provide mutual exclusion in the criti-
cal section. There are pros and cons for each algorithm. For this discussion,
we will consider a centralized algorithm, a distributed algorithm, and a
token-ring algorithm.

In the centralized algorithm, each control element would request access to
the critical section from the coordinator. If the coordinator determines that
access is available, then the requesting control element would be granted
access to the critical section. If another control element currently has access to
the critical section, then the coordinator cannot grant access to the requesting
control element; however, the coordinator queues the request for when the
occupying control element vacates the critical section. This centralized algo-
rithm satisfies the safety, liveness, and fairness properties. Only one control
element can gain access to the critical section at any given time. All requests
will eventually be fulfilled. Requests are satisfied in the order each request
is made. The downside to this algorithm is that the coordinator becomes a
single point of failure in the system of systems. If the coordinator crashes,
then operations may go down.

In the token-ring algorithm, a token is passed from control element to con-
trol element in a prescribed pattern of token passing. This token must be held
by a control element to access the critical section. If a control element receives
a token, it checks to see whether it desires to enter the critical section. If so,
the control element accesses the critical section and performs its work.

After it leaves the critical section, the control element passes the token on
to another control element. The token continues to circulate in the prescribed
pattern until a control element desires to access the critical section. The dis-
tributed algorithm satisfies the safety and liveness properties; however, it
does not satisfy the fairness property as previously defined. Only one control
element can gain access to the critical section at any given time. All requests
will eventually be fulfilled. Requests are satisfied as the token becomes avail-
able. Every control element will have access to the token during every token-
passing circuit on the network. Access is fairly granted but requests are not
granted with respect to the time the request is made. The downside of this
algorithm is that the detection of a lost token on the network is difficult to
distinguish from the situation in which the token is being held by any given
control element on the network. Additionally, if a control element fails or is
lost, the prescribed pattern of token passing is interrupted.

In the distributed algorithm, a control element constructs a message that
indicates the name of the critical section that it wants to access. This message
is sent to all other control elements. When another control element receives

Chapter fifteen: Space applications of system of systems 399

the access-request message, it will perform one of the following three actions
based upon its current state:

 1. If the control element is not in the requested critical section and does
not want to enter the requested critical section, it will send an “OK”
message back to the requesting control element.

 2. If the control element is in the critical section, it will queue the request
for access.

 3. If the control element is not in the requested critical section but wants
to enter the requested critical section, it will compare the timestamp on
the requesting message to the timestamp on its own request message.
The control element honors the message with the older timestamp.
If the received message has an older timestamp, then the control ele-
ment sends an “OK” message to the requesting control element. If the
received message has a younger timestamp, then the control element
queues the request message and waits for action on its access request.

The distributed algorithm can satisfy the safety, liveness, and fairness
properties for the unmanned space exploration system of systems. Only one
control element can gain access to the critical section at any given time. All
requests will eventually be fulfilled. Requests are satisfied in the order each
request is made. The downside of this algorithm is that each control element
on the network is a potential point of failure. That is, if a control element is
lost or failed, it will not respond to access requests from other control ele-
ments. Consequently, this “silence” will be interpreted as a denial of access
by control elements that have submitted access requests to the critical section.
Additionally, every control element in the network is a potential bottleneck
given the number of messages generated for each access request.

15.2.2.2 Dependability
In general, we do not have the luxury of beginning a space exploration sys-
tem of systems development from scratch. We must work with the compo-
nents that are in development and components that are in operational use.
We cannot begin totally anew, so we must find other methods to apply to this
common development situation for a system of systems.

Oftentimes, engineers focus intently on developing the desired function-
ality and fail to sufficiently address dependability. Before we embark on our
discussion of dependability, we offer our definitions of a dependable system
and a trustworthy system:

A •	 dependable system is one that provides the appropriate levels of correct-
ness and robustness in accomplishing its mission while demonstrating
the appropriate levels of availability, consistency, reliability, safety, and
recoverability.

400 Dale S. Caffall and James Bret Michael

A •	 trustworthy system is one that provides the appropriate levels of cor-
rectness and robustness in accomplishing its mission while demon-
strating the appropriate levels of availability, consistency, reliability,
safety, and recoverability to the degree that justifies a user’s confidence
that the system will behave as expected.

With respect to dependable and trustworthy systems, we define the
following properties in the context of a dependable system of systems for
space exploration:

Availability:•	 The probability that a system is operating correctly and is
ready to perform its desired functions
Consistency:•	 The property that invariants will always hold true in
the system
Correctness:•	 A characteristic of a system that precisely exhibits predict-
able behavior at all times as defined by the system specifications
Reliability:•	 The property that a system can operate continuously with-
out experiencing a failure
Robustness:•	 A characteristic of a system that is failure and fault tolerant
Safety:•	 The property of avoiding a catastrophic outcome given a system
fails to operate correctly
Recoverability:•	 The ease for which a failed system can be restored to
operational use

Other properties can be used to describe a dependable system; however,
we selected the above seven properties, as these seven properties should
be the minimum set of properties for a dependable system of systems for
space exploration.

Engineers must find new development methods for producing a depend-
able system of systems that exhibits predictable behavior and fault tolerance
during runtime. As suggested in numerous publications, our current devel-
opment techniques fail to support system developers in producing a system
of systems with predictable behavior. Almost exclusively, engineers rely on
testing prior to fielding the completed product to assess system behavior.
Rather than discovering system behavior at the end of the development
phase, engineers might apply techniques that support the design and real-
ization of desired system behavior from the earliest phases of concept devel-
opment, architecture, and specification.

In space exploration, NASA must have confidence that the spacecraft will
correctly launch, ascend into space, travel to its space objective, complete mis-
sion objectives, and return safely to Earth in the situation of manned space
exploration regardless of the conditions in the operational environment.
That is, space exploration system of systems must be trustworthy systems.
Besides the impact of mission failure, public confidence in NASA’s ability to

Chapter fifteen: Space applications of system of systems 401

lead space exploration could erode. Certainly, the impact of mission failure is
always of interest in Congress, which sets annual funding levels for NASA.

In space operations, the computations for launch, guidance, navigation,
and control must be correct and robust; that is, the space exploration system
of systems should demonstrate correctness in that it does the right thing all
the time and it is available all the time to complete the space mission objec-
tives. Additionally, the space exploration system of systems should dem-
onstrate robustness in that it handles unexpected states in a manner that
minimizes performance degradation, data corruption, and incorrect output.

In the consideration of dependable software in space exploration system of
systems, engineers should consider the development of architecture, compo-
nent frameworks, contract interfaces, specifications, and distributed system
design. Our seven properties of a dependable system apply to each of these
areas; however, each area has unique considerations that engineers should
consider, as previously discussed.

Dependability is equally as important as functionality. Dependability is
an independent entity and should not be considered in the trade space for
functionality. A rocket that functions as designed but demonstrates a 50%
malfunction and abort rate is not a useful rocket. Dependability must be
built in from the earliest phases of the system-of-systems development life-
cycle—not bolted on at the end of the development.

15.3 Conclusion
Evolving space exploration system of systems may well prove to be the most
challenging endeavors in the history of humankind. However, if NASA is
to successfully fly Orion to the International Space Station, return to the
Moon, travel to Mars, and collect data from the far reaches of our solar sys-
tem, the NASA engineers must solve the issues of developing a system of
systems. With respect to evolving space exploration systems of systems, we
have discussed architecture, component frameworks, components, contract
interfaces, specifications, distributed systems, and dependability. There are
other issues in evolving a system of systems, but solving the problems pre-
viously discussed will dramatically increase the mission success of space
exploration.

403

chapter sixteen

Airport operations
a system-of-systems approach

Saeid Nahavandi, Doug Creighton,
Michael Johnstone, and Vu T. Le

Contents

16.1 Introduction to airport operations ...404
16.2 An introduction to system-of-systems concepts404
16.3 Airport operations and analysis ...405

16.3.1 Airport security ..405
16.3.2 Passengers (PAX) ..406
16.3.3 Passenger baggage ..406
16.3.4 Air cargo ..406
16.3.5 Additional security concerns ..406

16.4 Airport operations as a system of systems .. 407
16.4.1 Operational independence .. 407
16.4.2 Managerial independence ... 407
16.4.3 Geographical distribution ... 407
16.4.4 Emergent behavior ... 407

16.5 Rapid model architecture for airport operations 407
16.5.1 System inputs ..408
16.5.2 Data collection ...409
16.5.3 Model development phases ... 412
16.5.4 Model validation and verification .. 412
16.5.5 Subsystem analysis ... 414

16.5.5.1 Data analysis tool ... 414
16.5.5.2 Input generator ... 416
16.5.5.3 Automated flow control .. 417

16.5.6 Overall system performance ... 418
16.6 Conclusion .. 418
16.7 Future challenges in airport operations .. 419
References .. 419

404 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

16.1 Introduction to airport operations
Analysis of airport operations is commonly performed in isolation, sharing
only simple information such as flight schedules. With the increased concern
over security in our airports, a new approach is required whereby all aspects
of the airport operations are considered. A system-of-systems methodology
is proposed and demonstrated through example. This method provides the
decision maker with an improved understanding of the implication of pol-
icy decisions, resource allocations, and infrastructure investment strategies,
through the capture of emergent behaviors and interdependencies. New
tools and methodologies are required for model development and analysis.
These tools and methods are presented in this paper.

16.2 An introduction to system-of-systems concepts
What is a system of systems (SoS)? This question is made clearer by describ-
ing attributes that are frequently associated with systems of systems. A
system of systems is composed of a collection of systems that are able to
function individually or independently. There is no requirement between
the separate systems to enable them to exist; however, when the individual
systems are brought together, the gains from the system of systems is greater
than the sum of the gains from the individual systems. This attribute rules
out complex systems, such as the human body. Although it can be argued
that removal of one airport business function might cause the entire sector
to collapse, it could still function in some form. This differs from the human
body where, for example, without the nervous system the circulatory system
would cease to function.

The second attribute is managerial independence, inferring that the indi-
vidual systems are managed separately, with differing individuals respon-
sible for the strategic direction. This attribute effectively rules out separate
divisions from the one company due to the overriding CEO of the company
defining a global company strategic direction.

The third attribute used to describe a system of systems is that there may
be differences in the geographic location of the individual systems. To visu-
alize this attribute, contemplate a battlefield where information from ground
troops about enemy formations can be relayed to support aircraft. Here infor-
mation from diverse locations is compiled to give a better understanding of
the entire battlefield.

The final common attribute is that systems of systems display emergent
behavior. This attribute infers that functions or behaviors not evident in the
individual systems can be performed by the system of systems as the sys-
tem of systems adapts and evolves over time. Due to these unique attributes,
there lies an opportunity to develop methods to study systems of systems
and predict their eventual behavior as the individual systems change, caus-
ing changes in the larger system of systems.

Chapter sixteen: Airport operations 405

16.3 Airport operations and analysis
The term airport operations initially triggers the view of passengers being
transported by aircraft. Further thought would identify activities that directly
or indirectly affect passenger operations, such as baggage handling systems
(BHS), aircraft maintenance, and passenger security. In fact, airport opera-
tions consist of numerous aspects: concourses, runways, parking, airlines,
cargo terminal operators, fuel depots, retail, cleaning, catering, and many
interacting people including travelers, service providers, and visitors. The
facilities are distributed and fall under multiple legal jurisdictions in regard
to occupational health and safety, customs, quarantine, and security. For the
airport to function, these numerous systems must work together.

Currently decision making in this domain space is focused on individual
systems. The challenge of delivering improved nationwide air transpor-
tation security, while maintaining performance and continuing growth,
demands a new approach. In addition, information flow and data manage-
ment are a critical issue, where trust plays a key role in defining interactions
of organizations.

Of great concern recently has been the need for rapid implementation of
security measures in place at airports to protect passengers, staff, and aircraft
[1]. While individual systems are being improved to increase security, such
as the use of EDS (explosive detection systems) in baggage systems, a holis-
tic view is required for this complex airport environment. By analyzing the
operations as a system of systems, a more thorough understanding of what
is currently going into airport security can be achieved, and the real and
perceived levels of risk can be reduced. Also, a layered approach to security
can be applied to the systems of systems to improve the safety of passengers,
staff, and aircraft. The financial cost of implementing a security policy in an
airport can be reduced through the study of the individual systems within
the airport and their interactions.

System of systems methodologies are required to rapidly model, analyze,
and optimize air transportation systems. In any critical real-world system
there is and must be a compromise between increased risk and increased flex-
ibility and productivity. By approaching such problem spaces from a system
of systems perspective, we are in the best position to find the right balance.

16.3.1 Airport security

Airports have become a focus point of government security policy making
since the September 11 attacks. Current research has focused on detection
of contraband items before being loaded on aircraft [2] and the allocation
of X-ray machines to passenger services, trading off between cost, effective-
ness, and deterrence [3]. To gain an understanding of all the relevant security
threats, they will be discussed next.

406 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

16.3.2 Passengers (PAX)

The first security threats we shall consider are those generated by passengers.
Passengers pose three situations that are required to be dealt with, carry-
on baggage, the individuals themselves, and checked baggage, which will
be discussed in the following section. Passengers would now be well aware
of the security measures in place to protect from any threats. Metal detec-
tors are used to screen individuals, with more complex individual screen-
ing in development [4] and X-ray machines used to check carry-on luggage.
Behind-the-scenes profiling can identify “high-risk” passengers, and a range
of explosives detection technologies are being investigated for their effec-
tiveness. Effectiveness can be achieved both through their perceived value
(functioning as a deterrent) as well as the actual detection performance.

16.3.3 Passenger baggage

The second security threat is that of checked baggage. At passenger
check-in, bags are labeled with a bar code to identify the passenger, bag,
and flight details. Before the bags are delivered onto the plane, they must
undergo screening by X-ray machine or EDS. The BHS uses a layered secu-
rity approach in order to accommodate large volumes of bags. The first layer
involves examination by high-capacity X-ray machines. Any bags not able to
be cleared are escalated to a combination of human image inspection, human
manual inspection, or a more detailed X-ray machine. The layered approach
ensures suspect items are identified while maintaining a high throughput.

16.3.4 Air cargo

A third security threat deals with the air cargo operations of an airport.
Freight for an airline is managed by a cargo terminal operator (CTO). CTOs
receive freight from a variety of sources including freight forwarders (FF),
postal services, and occasionally members of the public. The CTO utilizes
the cargo space of a flight, consolidating freight where appropriate and bal-
ancing available space between passenger baggage and freight cargo. As air
cargo provides a valuable addition to a country’s economy, it is essential it
is kept secure while not imposing so strict a policy that the operations will
grind to a halt.

16.3.5 Additional security concerns

Further security areas include, but are not limited to, physical access to sites
within the airport, staffing, maintenance, and aircraft supplies.

Chapter sixteen: Airport operations 407

16.4 Airport operations as a system of systems
Earlier in this chapter, attributes that describe a system of systems were
described: operation and managerial independence, geographic isolation,
and emergent behavior. These attributes can now be used to describe airport
operations as a system of systems.

16.4.1 Operational independence

Passenger services are theoretically able to operate without freight and mail
services and vice versa; however, the combination of both services provides
a more favorable economic situation.

16.4.2 Managerial independence

Services within an airport are provided by many independent companies.
In some cases the same service (e.g., CTO) is provided by several companies
competing for an airlines business. This distribution of service providers is
in line with the managerial independence for a system of systems.

16.4.3 Geographical distribution

While not separated by large distances, airport services are typically treated
as isolated from the perspective of the analyst. Passenger screening and bag-
gage services exist within the concourse, while cargo operations take place
within the airport grounds.

16.4.4 Emergent behavior

Through studying airport operations as a system of systems, the emergent
behavior is discovered. Through the sharing of common resources, more
efficient operations can be achieved within the individual subsystems.

16.5 Rapid model architecture for airport operations
Simulation is recognized as an important tool in the study of airport opera-
tions [5]. Simulation modeling provides the tools to answer complex prob-
lems that are presented in real-world scenarios. The knowledge gained
through the completion of a simulation study provides essential information
for any long-term decision-making process.

If traditional methods were used to model complex environments such as
an airport, the time to generate the model would be enormous. In the past,
simulation models have been used as an add-on to the design process, sim-
ply verifying a particular design. By using rapid modeling techniques the
time to generate and analyze the simulation models can be greatly reduced.

408 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

A result of this is that the simulation model is able to provide useful informa-
tion during the design process, improving the design and reducing the pos-
sibility of effort being put into inappropriate designs. An overview of some
techniques is given below.

16.5.1 System inputs

The major inputs to the system are shown in Figure 16.1. These inputs have
been identified as key inputs to the system.

Flight schedules define the arrivals and departures of all flights to and
from the airport. These schedules allow for the scheduling of other resources
within the system.

Security levels define the minimum levels of security that must be achieved
by the system. This may imply 100% checked baggage screening, random
and continuous, or targeted screening through flight or customer profiling.

Screening machines from different vendors have varied performance
levels and processing rates. The time taken by different models to capture
and analyze images, as well as the machines’ reject rates, are different. This
information needs to be captured in order to develop accurate models.

The arrival rate for passengers and cargo needs to be captured during the
data collection phase simulation project and used in the simulation model.
From a modeling perspective, passenger, passenger baggage, and cargo
loads can be estimated from the flight schedule. Taking into consideration
variables such as daily, weekly, and annual cycles, destinations, fare types,
or aircraft type, it is possibly to generate profiles to model the input variabil-
ity. Current modeling methodologies assume that passenger and cargo loads
are somewhat determined by the corresponding flight schedules. An SoS
approach requires these to be treated as part of the modeling itself, rather
than just an input to the model.

Freight
Loads

Passenger
Loads

Screening
Machines

System Inputs

Security
Levels

Baggage
System

Passenger
System

Air Cargo
System

Flight
Schedules

Figure 16.1 System inputs to an airport model.

Chapter sixteen: Airport operations 409

16.5.2 Data collection

Models require accurate data before they will produce meaningful results.
When modeling multiple systems, the task of data collection can become
enormous due to the number of constraints, exceptions to standard proce-
dure, and interdependencies. Compounding the challenges resulting from
the sheer volumes of information is the fact that major business sectors are
still predominantly paper based. Any reporting typically reports the average
performance statistics and does not capture the process variability critical to
understand the impact of changes to systems or procedures.

Therefore, automatic data collection techniques become highly desir-
able. Data can be sourced electronically from weighing machines, control
systems, booking systems, and many more places. In some instances, like
human operator decision process and execution times, automatic data col-
lection is not available, and alternative methods are required. In these cases
a simple interface to a software database is an extremely efficient way to col-
lect the data. An interface is shown in Figure 16.2. Data are collected for vari-
ous tasks as the buttons on the form are selected. As an operator performs a
task, the corresponding button on the form is selected; this will allow subse-
quent buttons to be selected depending on the status of the task. All button
sequences and timings are recorded.

Once the data has been captured and stored in the database, either
through the software illustrated in Figure 16.2, or through an import from
another electronic format, a visual user interface can be used to query the
database. An example of a user interface to query the database is shown in
Figure 16.3.

The interface allows for the selection of different tables and data ranges
to specify the data for analysis. By selecting analysis types on the left of the
interface, a series of graphs are generated for viewing on the right.

Figure 16.2 Software Interface to database.

410 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

A combination of automated and graphical analysis techniques are required
to facilitate the arduous task of data cleaning, to ensure the integrity of data,
and analysis. The analysis is required for model input, model validation, and
model analysis data sets.

When the user clicks [Graphing], the program will draw the data in a
plotting tool that allows visual inspection of data. A typical graph is shown
in Figure 16.4.

The graphical view of the data provides a data extraction method for erro-
neous data. For instance, during the experimental test trial, at the beginning
of the data collection process, the data obtained is not reliable. This is due to
many factors including training the operator to use the software and hard-
ware, changing the configuration of the system, determining a different area
to monitor, or too few data items due to the time of the day. Each of these
factors would affect the result from the collected data; therefore these data
points need to be excluded from the input data before it can be statistically
analyzed and inserted into the simulation system.

A user can toggle between “zoom” and “selection” mode while viewing
the graph. When a user chooses selection mode, points are able to be selected,
as shown in Figure 16.5.

Figure 16.3 User interface for database query.

Chapter sixteen: Airport operations 411

With the data selected, it can be removed from the graph, as shown in
Figure 16.6.

Once the data is cleaned, it is available for use in the model. An overview
of the data cleaning and analysis tool is shown in Figure 16.7.

Figure 16.4 Data analysis graphical output.

Figure 16.5 Multiple point selection.

412 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

16.5.3 Model development phases

Development of the model can be split into two sections, a high-level model
to establish relationships and verify data and detailed models to use for veri-
fication and analysis.

The high-level model is used for verification of logical flows within the
system and is used to establish relationships within the submodels. A high-
level model provides a more suitable tool with which to go to various man-
agement levels from different companies to confirm plant operations and
flows. It also gives credence to requests for detailed information from the
company. The information requested, such as arrival times of goods over
a large time frame, can require a large effort on behalf of the company to
produce. The high-level model can help convince the company of the need
for the data and show the benefits that the simulation process will generate.

The detailed models of each system are used to verify the data received
from the system being modeled and to analyze the system. They require
information on arrival rates and volumes, process flows and timings, dead-
lines, staffing levels, and all the variables commonly associated with a sim-
ulation analysis. The detailed models require validation, as discussed in
Section 16.5.4, and analysis, which is covered in Section 16.5.5.

16.5.4 Model validation and verification

The role of model validation is to show that the detailed model is a true repre-
sentation of the actual process. Ideally, this should be done with the experts of
the system being modeled. Data that was supplied by the company in question

Figure 16.6 Dataset with erroneous data cleaned.

Chapter sixteen: Airport operations 413

Ca
rg

o
A

na
ly

se
r

A
na

ly
sis

 T
yp

e
A

na
ly

sis
 G

ro
up

D
isp

la
y T

yp
e

D
at

a E
xt

ra
ct

io
n

Re
so

ur
ce

 E
ve

nt
s

Ev
en

t D
at

as
et

N
am

e,
ID

, D
at

e

ID
, N

am
e

Ev
en

tID
s

Ba
r,

Li
ne

 et
c.

A
na

ly
sis

Ty
pe

,
D

isp
la

yT
yp

eI
D

, A
na

ly
sis

Ti
m

e R
an

ge
Ev

en
tD

at
as

et
ID

Ti
m

e B
et

w
ee

n
Ev

en
ts

 o
r I

nt
er

-
ar

riv
al

Ti
m

e

Re
so

ur
ce

Ev
en

ts
ID

In
cl

ud
e o

r E
xc

lu
de

N
am

e,
ID

Th
ro

ug
hp

ut
, T

im
e

Be
tw

ee
n

Ev
en

ts
,

Pe
rfo

rm
an

ce
, A

rr
iv

al
Ti

m
e,

In
te

rA
rr

iv
al

 T
im

e

Fi
gu

re
 1

6.
7

A
n

ov
er

vi
ew

 o
f t

he
 d

at
a

cl
ea

n
in

g
an

d
 a

na
ly

si
s

to
ol

.

414 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

should be compared with the data being entered into the model, i.e., arrival
rates and volumes, and any assumptions that have been made clearly stated.
The model should be run with animation to give more weight to the data that
the model produces. Once the process flows are verified, data produced from
the model can be presented and any discrepancies discussed. Once the model
is recognized as a true representation of the real system, new scenarios can be
run to answer “what if” questions about the process and to tune real-world
operational policies.

16.5.5 Subsystem analysis

Techniques for detailed analysis of subsystems are presented in this section.
As the analysis will focus on the flow of items, either people, bags, or cargo,
the models are designed to capture events as the items pass through way-
points in the system. This allows for the analysis of the path taken through
the model. Travel times, bottlenecks, utilizations, arrivals, and exits are
examples of the data that can be analyzed. An overview of a tool to ana-
lyze the data generated by the models is presented in Section 16.5.5.1, while
an automated input generator is described in Section 16.5.5.2. Flow control
through the system is described in Section 16.5.5.3.

16.5.5.1 Data analysis tool
A hierarchical view of the data analysis tool is shown in Figure 16.8. The ana-
lyzer is implemented as a separate executable from the simulation model, but
has the ability to modify input data files used by the models. This enables the
analyzer to run independently and update scenarios with knowledge gained
through the analysis of past model runs. The analyzer is designed to make
the analysis of new results simple, logical, and with the minimal effort.

The analyzer works by describing a criterion of analysis, defined in the
analysis method; it could be throughput, travel time, or amount of items in a
certain section of the system within a time interval. This criterion is basically
a search criterion specifying when an item passes certain nodes or does not
go through a certain node. It could describe an item that goes through node
one before going to node two and so on.

Each defined analysis criterion is then assigned to an analysis collection.
The analysis collection will hold a number of analysis criteria. In terms of a
system of systems, we have a set of criteria from the analysis method system
that is embedded inside an analysis collection system. The analysis collec-
tion also contains the analysis range and interval definition to fully describe
an analysis collection. Each of the criteria within a collection can then be
assigned to an individual output run, so that multiple output runs can be
analyzed and compared against each other. In order to display the result, the
display format is defined and appended to the analysis collection to present
the analyzed result.

Chapter sixteen: Airport operations 415

Ve
rs

io
n

N
o.

A
na

ly
sis

 S
et

up

Pr
oj

ec
tN

am
e,

D
at

as
ou

rc
e P

at
h,

Pr
oj

ec
t P

at
h

D
at

as
ou

rc
eI

D
D

at
as

ou
rc

eN
am

e,
Pa

th

Fo
rm

at
ID

, X
tit

le
,

Yt
itl

e,
Fo

nt
 si

ze
,

Ya
xi

s u
ni

t,
Xa

xi
s

un
it,

 et
c.

Th
ro

ug
hp

ut
,

Tr
av

el
 T

im
e,

In
te

r
A

rr
iv

al
 T

im
e,

In
-

Sy
st

em
 B

ag
s,

Co
m

po
sit

e e
tc

.

A
na

ly
sis

Co
lle

ct
io

nI
D

,
N

am
e,

Ty
pe

, B
in

 In
te

rv
al

,
Ro

lli
ng

 In
te

rv
al

, T
im

e
Ra

ng
e X

m
in

, X
m

ax
,

D
at

as
ou

rc
eI

D

A
na

ly
sis

D
efi

ni
tio

nI
D

Cr
ite

ria
ID

, D
at

as
ou

rc
eI

D
,

Bi
n

In
te

rv
al

, R
ol

lin
g

In
te

rv
al

, X
m

in
, X

m
ax

O
ut

pu
t

D
at

a S
ou

rc
e

D
isp

la
y F

or
m

at
A

na
ly

sis
 M

et
ho

d
A

na
ly

sis
 C

ol
le

ct
io

n
Co

lle
ct

io
n

Se
t

Co
lle

ct
io

n
Se

t I
D

Co
lle

ct
io

n
Se

t I
D

,
Co

lle
ct

io
n

Se
t N

am
e

A
na

ly
sis

 C
ol

le
ct

io
n

ID
D

isp
la

y F
or

m
at

ID
A

na
ly

sis
D

efi
ni

tio
n

Cr
ite

ria
 ID

, A
na

lys
is

Cr
ite

ria
 N

am
e,

Cr
ite

ria

Se
rie

s F
or

m
at

Co
lo

r,
D

isp
la

yT
yp

e,
La

be
l e

tc
.

M
at

la
b

M
od

ul
e

A
na

ly
se

r

Fi
gu

re
 1

6.
8

A
na

ly
ze

r
ov

er
vi

ew
.

416 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

The analysis collection set is a grouping method that allows multiple
selections of analysis collections to be analyzed simultaneously. This is nec-
essary in order to specify a group of subsystem resources or sections within
a large system to analyze together. It could be a modification to the model,
and we want to analyze it in its own analysis collection set. This would allow
previously defined criteria and analysis collection sets to be used to analyze
modified systems.

Output results from analysis of the collection set can then be further ana-
lyzed for statistical significance due to changes. This is done by integrating
Matlab to perform statistical analysis. An example output from the analyzer
is shown in Figure 16.9. In this figure the inputs to the system are shown as
a 10-minute rolling average over the day. It can be seen that there is a heavy
peak at 6 a.m. and a later peak at 5 p.m., reflecting the busier time of day at
an airport in terms of passenger demand.

16.5.5.2 Input generator
It is important to be able to test each subsystem and even sections of each sub-
system with a variety of inputs in order to observe how the system will behave
over the full range of possible input combinations. Rather than using the sys-
tem inputs that were determined during the data collection, it is more efficient
to generate the desired range of inputs using a highly configurable method.

The basis for the input generator is to provide a simple method to test
specific sections of models using a range of input conditions. To achieve this,
the input generator uses a sinusoidal waveform with parameters to specify
the amplitude, frequency, and relevant time period.

Once the waveforms have been configured, they can be applied to sec-
tions of the model during runtime. For example, if we are interested in how a
specific merge is performing in a BHS, we are able to specify flows inputting

00:0022:0020:0018:0016:0014:0012:00

Total Input Demand

Time (HH:mm)
10:0008:0006:0004:0002:0000:00

0

50

100(B
ag

s/
H

ou
r)

150

200

All Input (10 MinRA)
250

Figure 16.9 Analysis sample output.

Chapter sixteen: Airport operations 417

into the main line and merge line, and using the data analysis tool, we can
determine how the merge is performing.

16.5.5.3 Automated flow control
Flow control is an important aspect for systems that reflect networks. The
baggage handling system (BHS) within the airport is a system that uses a set
of rules for flow control to route bags from the check-ins to the exits within
the system. Determining the flow control for the baggage system manually
is a time-consuming task, and without testing it is not possible to define an
optimal set of rules to route the bags through the system.

Before a bag can be routed to its system exit, it must have been identified
by a barcode scanner and determined to not contain banned items via X-ray
screening. This is the role of the baggage handling system. Ideally, the BHS
will perform these operations on the bags and deliver them to the correct exit
in the minimum possible time. A 3-D simulation model representation of a
BHS is show in Figure 16.10. This example represents a small section of the
conveyor system showing automatic tag readers (ATR) and X-ray machines.

An algorithm has been developed to generate the set of flow control rules
to control the conveyor system. The algorithm treats the system as a white
box; it can see within the system, but has no a priori knowledge of the sys-
tem and uses learned metrics to determine effective methods to route bags
through the network. Through knowledge gained of bag status changing (due
to either being scanned by ATRs or screened by X-ray machines) and system
loads, the algorithm is able to generate a set of rules to provide flow control
through the BHS. The set of rules are then implemented with the simulation
model to determine their effectiveness and look for possible enhancements.

Figure 16.10 An example of a baggage handling system showing X-ray machines
and tag readers.

418 Saeid Nahavandi, Doug Creighton, Michael Johnstone, and Vu T. Le

16.5.6 Overall system performance

Performance of security systems in airports has previously been applied to bag-
gage screening solutions [3] and a cost model approach in [6]. These methods
consist of determining the effectiveness of particular security solutions and
comparing the cost to the effectiveness of the solution. A similar approach can
be taken when analyzing the airport from a system of systems perspective.

Determining the overall system performance begins with investigation of
the key criteria used to define a cost function. If we look at the key inputs to
the model from Figure 16.1, the volumes of passengers and freight, as given
by flight schedules, and their individual arrival rates are of interest. We are
also interested in the required security level to be achieved and the number
of available screening devices and their capabilities. These criteria can be
grouped together in terms of cost. This cost-based approach will determine
the expense involved in achieving varying security levels.

By running each detailed model, we are able to see what effects these cri-
teria incur on the individual system. Each run of a detailed model requires
data analysis which normally is a lengthy process. By automating this analy-
sis using the data analysis tools described, we not only save time but can
bring these results back into the higher-level system and feed the new data
into the subsystems. Through this iterative behavior, various scenarios are
able to be investigated, and some useful traits can become evident in the
model. For example, the sharing of staff to operate the X-ray machines is pos-
sible, due to differences in the peak times between different freight operators
and the baggage system. Now this can only occur if the operators are trained
on all the models of X-ray machines in use. However, by reducing this pool
of available X-ray machines, the training costs will be reduced, and the over-
all system costs to achieve a specific security level will also be reduced.

16.6 Conclusion
A system-of-systems modeling and analysis perspective of an airport has
been presented. In order to analyze the airport, new tools and methodologies
are required. The tools automate the data collection and analysis required
for the detailed models, while the methodologies show how the subsystems
can be combined into a high-level model to characterize the system inputs
and the interactions between variables of the submodels.

The system-of-systems approach has helped to analyze the entire airport’s
approach to security. Rather than treating each aspect of the airport as a
separate entity, by recognizing the need for a holistic approach, we have
been able to gain significant insight into the most appropriate ways security
can be implemented to achieve the highest level of security with the least
amount of costs incurred.

Chapter sixteen: Airport operations 419

16.7 Future challenges in airport operations
While we have mainly been considering the security side of airport opera-
tions, there are many more issues that can be addressed with a similar
approach. Care must be taken with these systems, as they are closely con-
nected and often are near to capacity [5]. Similar tools for data acquisition
and analysis will make the task more manageable, and in the data collection
phase a better understanding of the environment is often achieved.

Vast amounts of effort have been put into the analysis of separate or indi-
vidual airport systems. In order to combine these efforts to achieve a more
realistic model of the world, a common approach to problems could be used,
an approach similar to the system-of-systems approach presented here.

The challenge exists to model emergent behavior further. Although mod-
eled here to some degree, better tools and methods are required to model
this important feature of system of systems. With improved tools and tech-
niques, the emergent behavior can be observed and analyzed to provide fur-
ther understanding of the very complex system under investigation.

References
 1. Leone, K. and R. Liub. 2005. The key design parameters of checked baggage

security screening systems in airports. Journal of Air Transport Management 11:
69–78.

 2. Dawson, J. 2002. National labs focus on tools against terrorism in wake of air-
liner and anthrax attacks. Physics Today 55(1): 4.

 3. Kobza, J. E., T. J. Candalino, and S. H. Jacobson. 2004. Designing optimal avia-
tion baggage screening systems using simulated annealing. Computer and Oper-
ations Research 31(10):1753–1767.

 4. Dirner, C. 2007. TSA rolls out new screening technology. ABC News.
http://www.abcnews.go.com/Technology/story?id=3716917&page=1.

 5. Wieland, F. and A. Pritchett. 2007. Looking into the future of air transportation
modeling and simulation: a grand challenge. Simulation 83:373–384.

 6. Jacobson, S. H., T. Karnani, J. E. Kobza, and L. Ritchie. 2006. A cost-benefit anal-
ysis of alternative device configurations for aviation checked baggage security
screening. Risk Analysis 26(2):297–310.

421

chapter seventeen

Knowledge amplification
by structured expert
randomization—KASERs
in SoS design
Stuart H. Rubin

Contents

17.1 Introduction ...422
17.2 Problem statement ..423
17.3 Background ..423
17.4 Randomization ..428
17.5 Expert compilers ...429
17.6 The knowledge acquisition bottleneck ..430

17.6.1 A theoretical perspective ... 431
17.6.2 Church’s thesis .. 431
17.6.3 Pseudo-code .. 431

17.7 Knowledge-based language design ...434
17.7.1 An example ..434

17.8 Expert vs. conventional compilers ..435
17.9 Expert optimizing compilers .. 437
17.10 Knowledge reuse ... 437
17.11 An information-theoretic basis ... 439
17.12 Knowledge amplification ... 439
17.13 Mining for rules ..440

17.13.1 Approach ... 441
17.14 Refrigeration system design example ..443
17.15 Conclusion ..449
Acknowledgments ..449
References ..450

422 Stuart H. Rubin

17.1 Introduction
The U.S. Army needs robotic combat vehicles that can autonomously navi-
gate the battlefield and carry out planned missions that necessarily embody
unplanned details. On one end of the spectrum lie the simple insect-like
robots that have been popularized by Brooks at MIT [1]. Their simple behav-
iors can be evolved much in the same manner as a simple program can be
created through the use of chance alone. Of course, more complex behav-
iors cannot be tractably evolved, because the search space here grows expo-
nentially. What is needed are heuristics to guide the evolutionary process.
We can, of course, program search strategies and have indeed programmed
robots to perform a myriad of complex functions—from the robot Manny’s
(U.S. Army) ability to walk the battlefield to unmanned aerial vehicles
(UAVs). What is needed is a means to program more complex and reliable
functionality for constant cost. That is, a system of systems (SoS) is needed.
For example, one can program a robotic vehicle to sense and avoid an obsta-
cle on the right, say. But then, what is the cost of programming the same
robot to sense and avoid an obstacle on the left? It should be less, and is to
some extent if object-oriented component-based programs are written. The
problem here, though, is that the cost is front loaded. The programmer needs
to know a priori most of the domain symmetries if he or she is to capture
them in the form of objects. A better solution is to do for symbolic program-
ming what fuzzy logic did for Boolean logic [2,3]. That is, we need the pro-
grammer to be able to constrain the robot’s behavior in the form generalized
actions. Then, instances of these generalizations constitute the desired pro-
gram. Even search-control heuristics can be acquired through the exercise
of this paradigm. Instead of programming the robot to do a specific action,
we program the robot to (heuristically) search a space of actions for one or
more that is consistent with environmental constraints. The writing of such
programs is easier for the human, and the constraints that instantiate them
serve to render the search space tractable for the machine.

The advocated fuzzy programming approach also has ties with case-based
reasoning (CBR) [4]. Using traditional CBR, a program or case is needed for
navigating an obstacle on the right and another for navigating an obstacle
on the left as explained above. If a proper representational formalism is sup-
plied, then these two cases can be fused into one. This formalism will allow
environmental constraints to elicit one or the other navigational behaviors. It
also allows for the tractable evolution of behaviors not explicitly programmed
for as emergent behaviors (e.g., the simple behaviors of going forward or
backward). The development of a practical representational formalism for
the Army’s Future Combat System (FCS) is addressed below. The develop-
ment of a more general theory of formalization holds promise for the partial
mechanization of creativity and invention [5]. The spin-off benefits of this
line of work thus hold even greater promise and will serve to leverage the
initial investment, albeit, for the longer term [6].

Chapter seventeen: KASERs in SoS design 423

17.2 Problem statement
Can a computational intelligence be designed, which allows the knowledge
engineer to focus on what he/she does best—namely, the specification of gen-
eral knowledge and algorithms, while off-loading the details to the machine
(i.e., those details that the machine is best equipped to handle, namely, the
instantiation of general knowledge and algorithms)? Moreover, can such a
computational intelligence serve the U.S. Army’s FCS program through the
evolution of autonomous robotic behaviors and strategies? The solution of
this problem will entail the symbolic evolution of dynamic heuristics for
constraining effective search.

17.3 Background
This chapter was motivated by the failure of the Japanese Fifth Generation
Project [7] and embodies a prescription for success. Looking back, in the
mid-1980s the then Japanese Ministry for Industry and Trade (MITI) boldly
promised the world that they would build an intelligent architecture that
was more advanced than any to date. Over $250,000,000 (in 1980 U.S. cur-
rency) was invested in this project. MITI proposed to build a massively par-
allel architecture that realized the predicate calculus (Prolog) for intelligent
processing [7]. The reasons behind the failure of that project are now clear:
First, much of what we term common-sense reasoning is not amenable to
deductive reasoning (i.e., it is open under deduction). Second, Prolog’s back-
cut mechanism did not incorporate any heuristics to delimit the combinato-
rial explosion of resolution.

In 2002, Japan fired up an ultrafast vectored supercomputer that is approx-
imately ten times faster than its fastest U.S. competitor [6]. The advantages
attendant to making computers even faster are shared with those of acquir-
ing smarter heuristics. We are just beginning to gain the computing power to
understand what is going on in systems with thousands or millions of vari-
ables; even the fastest machines are just now revealing the promise of what is
to come. In addition to computational robotics, heuristic methods will serve
the gamut from climatic modeling to molecular biology and, of course, in
the simulation of nuclear fusion, to name just three. According to Tristram
[6], “The United States won’t be at the cutting edge of simulation—the “third
pillar” of scientific discovery—if the performance of its computers lags.”

War fighters need state-of-the-art technologies that provide support in
the analysis, assimilation, and dissemination of real and simulated digitized
battle-space information. In particular, analytic tools are needed for logistical
planning (e.g., optimization and resource allocation problems). The tractable
discovery of near-optimal paths using concurrent constraint-based programs
will enable the computation of mission plans of ever-greater complexity.

Expert systems have for two decades promised to deliver a rule-based
computational intelligence to the PC. This goal has been largely fulfilled,

424 Stuart H. Rubin

and the required level of computational intelligence has been realized using
far less computational power than the human mind is capable of. If we are
someday offered hardware that is several orders of magnitude faster than
that currently available, we say that our expert systems do not need this
much raw computing power and cannot effectively utilize it. Therein lies a
dichotomy. Intelligent systems must be able to use all the computing power
available, given an arbitrary problem to solve. Otherwise, the intelligent sys-
tem may be mathematically defined to be trivial because it does not utilize
(heuristic) search.

Figure 17.1 depicts the opportunity for increasing the cost effectiveness in
the design and realization of intelligent, or search-based, software. The point
labeled “A” depicts the high cost associated with a random evolutionary
strategy—that is, one where all of the design is off-loaded to a very high-end
machine. The asymptote to the left of this point evidences that this strategy
quickly grows to be intractable. The point labeled “B” depicts the high cost
associated with current programming practice—that is, where the entire
program design lies within the province of the knowledge engineer with-
out the associated benefits afforded through the deployment of evolutionary
tools to assist with development. The asymptote to the right of this point
shows that this strategy quickly grows to be impractical. The point labeled
“C” represents an optimum that varies with the operational domain. Here,
the knowledge engineer does what he or she does best (i.e., high-level design
work), and the computer does what it does best (i.e., a heuristic search for
detailed specifications). This represents the optimum symbiosis of human
and machine for the production of intelligent software. Notice that, if a more
powerful machine becomes available, then the designer’s task becomes pro-
portionately reduced and vice versa. Again, nothing is underutilized.

Knowledge Engineer Involvement/
Inverse Processing Power

0.0

Co
st

Optimum

C

A B
Low-End

Processing
High-End
Processing

+

+

Figure 17.1 Cost effectiveness of intelligent software design.

Chapter seventeen: KASERs in SoS design 425

Not every programming application or computational intelligence is a
candidate for realization using what we term, the heuristic calculus. The crite-
ria for the successful realization of this methodology are as follows.

The operational domain needs to be amenable to hill climbing. For •	
example, finding the correct set of numbers to a combination lock is
not defined as hill climbing inasmuch as one cannot ascertain that one
combination of numbers is closer to the true combination than another.
On the other hand, the task of driving from city A to city B using an
ordered set of intermediary cities such that the total distance driven is
minimized exemplifies hill climbing. It also evidences that there are
heuristic solutions to the NP-hard Traveling Salesman Problem (TSP).
Note that the use of hill climbing does not preclude the optimization of
recursively enumerated solutions, if any.
The evolved design can be tested using sets of input/output pairs, or •	
auxiliary expert systems to evaluate relative system performance. The
advantage provided by including characterizing I/O examples in the
process of program specification (and necessarily randomized testing
by definition [8]) is not theoretical, but rather is similar to the advan-
tages accorded the programmer working with, say, a fifth-generation
language such as LISP or SCHEME in comparison with one working
with a universal machine language. That is to say that, in practice, there
is no comparison!
The design is hierarchically decomposable into sets consisting of •	
relatively small objects. Small objects facilitate tractable evolution
(see below). Additionally, the problem domain should be reducible to
similar, but simpler, problems to facilitate tractable heuristic evolution.
For example, the game of chess can be reduced from an 8 × 8 board to
a 6 × 6 board with far less reduction in the space of possible strategies.
Indeed, it was customary to use a 6 × 6 board in the early days of com-
puter chess when computer memory was at a premium. Again, com-
puter time, in general, is always at a premium.
The design allows for the definition of labeled •	 sets of effective alterna-
tives. For example, in the design of primitives for robotic movement,
the set of allowable moves might be DIRECTION: {LEFT, RIGHT, FOR-
WARD, BACKWARD}.
A real-time model and/or simulation can be cost-effectively designed •	
to provide feedback on the success or failure of an instance of the user
design. Note that this model or simulation must be hardened against sys-
tem crashes to allow for rapid evolution. The choice between the use of a
model or simulation depends upon the relative costs/benefits of modeling
and building a simulation. In particular, simulations have the advantage
in that they can usually be run far faster—allowing for the evolution of
better systems. However, models can usually provide more exacting and
convincing demonstrations (e.g., using time-lapse photography). Clearly,

426 Stuart H. Rubin

the use of both simulations and models is favored where practical. In Fig-
ure 17.2, we see that simulations can often outperform models—but only
at a cost. The figure also shows that, to the left of breakeven, one should
opt to use simulations and then switch over to models to the right of this
point. The exact crossover point is domain dependent. This two-pronged
approach will serve to maximize the region of interest (ROI).

There are two specific applications, within the context of the Army’s FCS,
that are amenable to the use of a heuristic calculus for computational intel-
ligence. First are the applications involving programmed behaviors. In this
context, RoboScout, a robotic reconnaissance vehicle developed by the U.S.
Army, has three fundamental behaviors:

 1. Obstacle detection and avoidance
 2. Actions to be taken on enemy detection
 3. Actions to be taken on enemy contact

RoboScout needs to respond to dynamic and to some degree unpredict-
able situations with one among several, if any, appropriate actions. It is not
too difficult to specify situation–action pairings in general terms, but the
“devil lies in the details.” For example, the knowledge engineer might write:
IF detected THEN avoid harm. This general rule might be instantiated using
the heuristic calculus, on the basis of experiment, to yield for example: IF
laser detection registered THEN execute object for stealth retreat. Further-
more, while the need for the heuristic calculus is apparent for a single robot,
the need is even greater in the case of multiple robots whose complex behav-
ior requires communication and coordination.

The heuristic calculus is consistent with emergent behavior. Here, the
attendant benefits associated with its use are greatly leveraged. Other tasks
that can benefit from the heuristic calculus include critical axis of advance,

Breakeven
Models

Simulations

Performance0.0

Co
st

+

+

Figure 17.2 Cost effectiveness of intelligent software design.

Chapter seventeen: KASERs in SoS design 427

surveillance ranges (direct fire, lethal), dead/shadow spaces that need addi-
tional reconnaissance, sensor selection for tasking based on their capabili-
ties, sensor ganging, sensor target pairing, logistics (refueling), and zones to
input a commander’s intent for the mission.

Another U.S. Army robot, named Oberwatch, implements the generally
described task of sensing without being sensed. It will traverse sand dunes
and attempt to peek over the top to gather reconnaissance. Its mission can-
not be planned in great detail, if for no other reason than because the sand
dunes change their formation with changes in the prevailing winds. Here
again, the knowledge engineer can supply generic domain knowledge and
have the system of collaborative robots evolve behaviors that are consistent
with changing conditions and mission parameters.

There is no inherent reason why the heuristic calculus cannot be simi-
larly applied to a task such as developing sensor arrays, which best serve a
defined mission. Indeed, the arrays can be evolved to be reconfigurable for
several related missions. More generally, we say that the heuristic calculus
can find application in computational creativity. This should come as no sur-
prise, given that the heuristic calculus takes up where the predicate calculus
is essentially incomplete. The development of computational creativity may
be expected to have far-reaching implications for the development of net-
work-centric warfare. This follows because, instead of just programming a
computer to execute our immutable instructions, we are now moving to a
position whereby we can state our domain knowledge and provide the com-
puter with a means by which it can expand it by way of (heuristic) search. It
may be expected that the profoundness of this paradigm shift will become
evident in due course.

In particular, computational creativity serves to enable strategy evolution. It
is consistent with a naturalistic approach to decision making, whereby under
fast-paced, uncertain, and dynamic conditions, the Commander will act and
react on the basis of prior experience, generating, monitoring, and modify-
ing plans to meet the needs of the situation [9]. Furthermore, the Collective
Intelligence Module (CIM) would employ the heuristic calculus and assist
the Commander/Combat Service Support with planning and replanning
processes (i.e., Course of Action [COA]), mission rehearsal, identification of
enemy unit composition and intent, resource management, task expansion,
task feasibility, task status, and task optimization.

A war game simulation can be written and different designs tested.
Evolved strategies can be downloaded (i.e., similar to a cross compiler) for
use in distinct application software. The end result of strategy evolution
can be inserted in planning tools such as CAPES, FCS-C2, MC2, etc. Again,
the use of the human and machine are optimized toward a common objec-
tive. The plan accounts for the potential dichotomy created by the efficient,
rapid, and precise information processing of the robotic elements and the
imaginative, experienced, and intuitive reasoning of the human elements of
the Unit Cell [9].

428 Stuart H. Rubin

17.4 Randomization
Randomization is a term first coined by Gregory C. Chaitin in a 1975 Scientific
American article entitled, “Randomness and mathematical proof” [8]. This
is a detailed concept and explains why certain sequences of numbers are
said to be random—i.e., because a generator, which is more compact than
the sequence itself cannot be found. Thus, if one were to write the sequence:
0101010101010101 . . . , then you see a pattern and conceive an algorithm that
is a compaction (randomization) of that sequence. Here, the sequence is obvi-
ously not random. This example shows how the entropy of a software system
is decreased if data is represented as a program wherever possible (e.g., Euler
equations in lieu of tables of logarithms) [8]. If this is not possible, then the
data is said to be relatively random.

Randomization implies that the computer does what it does best and the
user that which he or she does best. Thus, the computer may be best utilized
as a search engine, while the software engineer/programmer is uniquely
valuable as a “conceptual engineer.” Such a human–machine symbiosis is
found at the cutting edge of software engineering.

Think of any effective optimization as a transformation. When one
transforms pseudo-code to program code, one is in effect optimizing the
concept for execution on a digital computer. When one transforms bubble
sort into quick sort, for example, again one is optimizing one function for a
more efficient function under practical assumptions about the data and the
computer. Optimization in the context of this chapter will be taken to mean
randomization with respect to space and/or time. Thus, for example, bubble
sort is temporally randomized (i.e., n > 21) into quick sort. Similarly, quick
sort is spatially randomized into bubble sort, since the latter has a smaller
core bit-image. Moreover, optimization where not trivial (e.g., peephole opti-
mization in a compiler), needs to be knowledge based. That is, in any non-
trivial search for a better program, one needs to apply heuristic knowledge
to that search. Otherwise, the search may be intractable on any computing
device. All of this ties into the importance of knowledge-based software
engineering.

Randomization is not limited to humans or machines. For example, bum-
blebees learn to fly the hypotenuse of a triangle formed from previous legs of
the same journey. Here, the reduced flight path is in effect a randomization.

The opposite of randomness, in Chaitin’s sense of the word, is symmetry.
That is, if a pair of objects are not mutually random, then they are mutu-
ally symmetric. For example, two fruits such as an apple and an orange are
mutually symmetric by many characterizations, but not by color; whereas, a
fruit and a rock are mutually random by most definitions.

Fruits may be genetically engineered by making use of the genetic sym-
metries. By inserting different genes into a protein one gets a new genotype,
which may result in a new phenotype, which may be viable and may be supe-
rior under certain conditions. These techniques have given rise to disease- and

Chapter seventeen: KASERs in SoS design 429

drought-resistant crops and several new antibiotics. Rational drug design, as it
is called, is rational only because it makes use of computational intelligence.

A network architecture, such as defined by the Web, can be employed to
mine knowledge from information. Such knowledge can be applied to the
construction of extensible intelligent search engines, which further serve to
put new knowledge at one’s fingertips. The point to be made is that mining
is in effect randomization and here serves to make for an intelligent Internet.
It can be done!

As a second example, closed-loop neural networks cannot be mathemati-
cally studied in detail as a consequence of the Incompleteness Theorem. Yet,
even here there is randomization at work. Each neuron temporally and spa-
tially sums around 20,000 inputs to yield one output signal, which is either
excitatory or inhibitory. This n:1 mapping defines a randomization, which
necessarily occurs in a system of randomizations driven by feedback. Exper-
iments have shown that such systems converge. It should be noted that these
systems are ideal candidates for photonic realization through the use of spa-
tial light modulators (SLMs). This is because of the nature of the connections
and the relaxed need for exactness or even speed in the system. Indeed, it
may be said that the relaxation of the precision required by strictly digital
computers may enable a revolution in computational intelligence. Of related
interest is a recent televised newscast, which stated that researchers have
succeeded in producing a primitive calculator using brain cells.

17.5 Expert compilers
Expert compilers or systems have control mechanisms (i.e., the inference
engine), explanation facilities (i.e., the explanation subsystem), and at least
one knowledge representation language with which to express the rules.
The higher the level of the knowledge representation language, the easier
it is to specify complex rules. It then follows that the rules, control mech-
anism, explanation subsystem, etc. can be bootstrapped (i.e., more rapidly
programmed) using the now effective pseudo-code! The more complex the
expert compiler becomes, the higher the level of pseudo-code that can be
realized, which of course means that a more complex expert compiler can be
created and so on. If one follows this chain of reasoning, then one will see
that it realizes the ultimate CASE (computer-assisted software engineering)
tool. It potentially contributes the most to the intertwined fields of artificial
intelligence and software engineering.

Improve the capability to code, and you improve the expert compiler.
Improve the expert compiler, and you improve the capability to code. This
idea is achievable, at least in theory, through the randomization of software
patterns in the form of a grammar and the use of an evolving grammar for
assisting in the specification of symmetric rules. A two-level expert compiler
is depicted in Figure 17.3.

430 Stuart H. Rubin

Here, an expert compiler written in pseudo-code transforms a very high-
level language (VHLL) to pseudo-code. The pseudo-code is then transformed
by an expert compiler written in Java to the Java language, which is then con-
verted to executable bytecode. There are two levels of bootstrapping here,
because there are two levels of expert compilers. The use of multiple levels of
expert compilers is a randomization. It represents a segmentation of knowledge
bases from the standpoint of functionality, removing symmetry, and thus ran-
domizing. The same pseudo-code compiler can be reused in the expert com-
pilation of many different VHLLs. The Layout software CASE tool by Objects
Inc. (Danvers, MA) was built through the realization of such a scheme.

Expert compilers are uniquely suited to the compilation of higher-level
languages. This stems in part because they are readily maintained and
updated—making for an extensible compiler, which in turn makes for
an extensible language. Expert compilers can also be networked for the
translation of heterogeneous languages (i.e., languages whose semantics are
arduous to define). Such languages are extremely high level and suffer from
ambiguity in their use. The network serves to bring different domain-spe-
cific expert compilers to bear on their translation.

17.6 The knowledge acquisition bottleneck
The knowledge acquisition bottleneck refers to the difficulty of capturing
knowledge for use in the system. Whether the system is used for evaluating
bank loans, intelligent tutoring, or prescribing medical treatments, the ques-
tion remains: How do we obtain the knowledge used by the system (i.e., code
it), and how do we verify it for mission-critical applications? For example,
the medical rule, IF the patient is coughing THEN prescribe cough syrup, is
usually true. However, an expert medical system having this limited medi-
cal knowledge would prescribe cough syrup to someone whose airway is
obstructed during the course of a meal, for example! It is lacking in the more
specific rule, IF the patient is coughing AND the patient was just eating
THEN apply Dr. Heimlich’s maneuver with certainty factor = 0.90.

We see from this one small example that knowledge acquisition needs to be
relatively complete, lest there be potentially dire consequences. Suppose that you
are a knowledge engineer whose task is to write rule bases—each containing

Java Bytecode

Java LanguagePseudo-Code

Expert
Compiler in

Java

Expert
Compiler in

Pseudo-Code

VHLL

Figure 17.3 A two-level expert compiler.

Chapter seventeen: KASERs in SoS design 431

thousands of rules for mission-critical applications (e.g., flight-control systems,
medical decision support systems, weapons systems, vehicle guidance systems,
and many more). It should be clear that the task is too difficult for human beings,
given the current state of the art in knowledge acquisition. It is just that this soft-
ware is inherently difficult to test.

We will propose a radically new method for cracking the knowledge
acquisition bottleneck, but before we do, let us see what the problem really
is. First, it should be mentioned that we have evolved higher-level languages
because they are more closely aligned with the way in which we think. This
should come as no surprise. Indeed, the Windows or other GUI was devel-
oped as a metaphor for our spatial-temporal reasoning. After all, we cannot
easily learn to read machine code, for we are not machines.

17.6.1 A theoretical perspective

Computability theory provides us with a fundamental understanding of the
nature of the problem. Rule predicates are recursively enumerable, but not
recursive. That is to say that the predicates can only be discovered by search
and cannot be functionally characterized. Any search process intrinsically
takes time, and that is the fundamental problem underlying the knowledge
acquisition bottleneck.

Grammatical inference techniques can suggest predicates, but only
through the implied use of a heuristic methodology. Otherwise, there would
be a contradiction on the nonrecursiveness of the problem. Fortunately,
heuristic search can be extremely powerful in practice and fails just in case
the sought knowledge is random relative to that embodied by the grammar.
We can live with this theoretical limitation. It turns out that the methodology
is potentially extremely good at providing symmetric knowledge with little
if any search. Again, that is what it offers us toward cracking the knowledge
acquisition bottleneck.

17.6.2 Church’s thesis

Around the turn of the twentieth century, a scientist named Alfonso Church
purported his thesis (i.e., Church’s thesis), which states that, if a concept
can be clearly and unambiguously represented as an algorithm, then it can
indeed be coded. You need not code the algorithm to prove that it can be
coded—only if you intend to use it. Thus, we defer to Church’s thesis to
accelerate our learning.

17.6.3 Pseudo-code

To begin with, we need to find symmetry in the above examples and design
the pseudo-code to capture that symmetry (i.e., orthogonal programming,
which is easier to read and maintain). An example should serve to clarify

432 Stuart H. Rubin

this. Notice that there are two types of loop constructs used—For and While.
They are symmetric in meaning, but not in structure. Here is the schema:

Repeat forever
(Initialize variable to value;) // Parenthesized expressions are optional.
Break if variable {<, >, =, <>} value;
(Body;)
{Increment, Decrement} variable;
(Body;)

End

Thus, the pseudo-code:

Repeat forever
Initialize index = 0; // There would be a rule that sees no decimal

and thus knows that it is an int.
Break if index >= numbers.length; // The expert compiler will trans-

form the relation.
Increment index;
System.out.println (numbers [index]);

End

would be compiled into:

for (int index = 0; index < numbers.length; index++)
 System.out.println (numbers [index]);

Now, compare this pseudo-code with similar pseudo-code, which com-
piles into a while loop:

Repeat forever
Break if position <= 0 | numbers[position-1] <= key; // The expert com-

piler can translate the logic.
numbers[position] = numbers[position-1];
Decrement position;

End

would be compiled into:

while (position > 0 && numbers[position-1] > key)
{
 numbers[position] = numbers[position-1];
 position--;
}

Now, it is clear that a human can do the compilations. Next, you should
observe how an expert compiler can be made to do the same. Table 17.1 pro-
vides two sample schema-based rules that determine if a for or a while loop is
called for. Note that they are only based on the previous examples.

Chapter seventeen: KASERs in SoS design 433

Also, it is not shown here that rules will apply in sequence. Different
schemes, including a tagging scheme, can be used to process the partially
transformed code. The partial transformation serves as a context to enable
subsequent transformations. By tagging the transformed code, one insures
that it will not itself be subjected to subsequent transformations. The tags are
all removed upon completion of the transformation (Table 17.2).

Table 17.2 A Sample While-Loop Rule

PSEUDO-CODE EFFECTIVE CODE

Repeat forever
 Break if variable1 R1
 value1 | variable2 R2
 value2;
 Body;
 Decrement
 variable3;
End

While
(variable1 !R1 value1
 && variable2 !R2
 value2)
 Body;
 variable3--;

Next, observe several items. First, the capability to pattern-match the rule
antecedent schemas is facilitated by having a very high-level language. That
is why it helps to bootstrap the expert compiler in at least two levels. The
capability to compile pseudo-code facilitates writing the rules. Here, the
pseudo-code should be designed to facilitate high-level textual compari-
sons and substitutions. Conversely, observe how difficult it would be to test
if “variable1 = value1” in assembler. You also need a symbol table to track
variable definitions. Having the proper pseudo-code to work with would
facilitate this. Once facilitated, you could more easily write rules, leading to
higher-level languages, which facilitate writing rules, and so on. Remember,
a small gain in the level of the language will result in an enormous improve-
ment in programmer productivity—not only in time saved writing code, but
in time saved in debugging it and reusing it!

Table 17.1 A Sample For-Loop Rule

PSEUDO-CODE EFFECTIVE CODE

Repeat forever
 Initialize
 variable1=value1;
 Break if variable2 R1
 value2;
 Increment variable3;
 Body;
End

for
(type
variable1=value1;
 variable2 !R1
 value2;
 variable3++)
 Body;

434 Stuart H. Rubin

17.7 Knowledge-based language design
Ever stop and wonder how it is that we design everything from assembly
languages to fifth-generation languages? You will find, on inspection, that
domain knowledge is used. This knowledge includes a knowledge of the type
of problems to be solved as well as software engineering issues—including
readability, testability, reuse, and maintenance. It follows that methodology
drivers can be constructed, which will, at a minimum, facilitate the software
engineer in the process of language design. Such methodology drivers are
to be driven by our inferential expert systems, which themselves are under-
pinned by higher-level languages, which in turn are supported by expert
compilers! In the theoretical limit, such methodology drivers will design
ever-better languages without human input—that input being replaced by
pure chance.

There are two fundamental routes by which higher-level languages can
be designed (e.g., pseudo-code). The first approach is termed, bottom-up
design and entails finding and extracting symmetries from the target-level
code (e.g., Java). The second, complementary approach is termed, top-down
design and entails the development of a structured high-level (i.e., random)
language for the target domain. Both approaches may be applied in any par-
ticular design. This is termed, middle-out design. For example, it may be found
that the initial bottom-up design has resulted in subsets (e.g., “{”) that can be
easily generalized (e.g., The set containing “{”, “(”, and “[” might be a gener-
alization in some instances. Note that a limited number of errors here can be
corrected through the acquisition of more specific rules.). Similarly, it may be
found that the initial top-down design has resulted in language constructs
that are too difficult, if not impossible, to translate. Again, a methodology
driver can provide the software engineer with assistance here.

17.7.1 An example

To begin with, just as it is more efficient to reuse small software compo-
nents or more general rules, so it is with designing an expert compiler. The
principle of problem decomposition should be applied. That is, render many
small steps in the process of transformation in lieu of several relatively large
ones. This will actually make it all easier to do! Next, formulate the rules
using transformative pseudo-code (e.g., bottom-up steps 1–6, or similar).
Rules should translate concepts (e.g., swap, bracket, et al.) in preference to
mere syntax (e.g., “{x” → “{x}”, which is a patch). That is, the rules should
translate objects that are components, or can be thought of as components.
This serves to make them more reusable. Reorder the rules from most spe-
cific to least specific and iteratively apply them to the initial pseudo-code.
When no more rules apply, the pseudo-code will have been transformed into

Chapter seventeen: KASERs in SoS design 435

Java. If errors occur, then these errors will be localized to a single step (i.e.,
box transformation). This makes it easy to repair the transformation rule, or
where necessary, add a more specific patch rule to the knowledge base. The
resulting Java code should perform the indicated function when run in the
lab. This same process is repeated for each additional program, written in
pseudo-code, for which translation to Java is desired. The rule base should
be run to exhaustion on the new pseudo-code. Then, if necessary, specific
rules should be added to the rule base that complete the transformation to
Java. Ideally, the resulting rule base will be (random-basis) tested against all
known pseudo-coded programs to make sure that a transformation error
has not been inadvertently introduced. Handle such errors with a more spe-
cific patch as before.

17.8 Expert vs. conventional compilers
So far, we have seen that an expert compiler merely substitutes for a con-
ventional compiler. That is, it has done nothing that a conventional compiler
could not do. Indeed, the first compilers were rule based, but were abandoned
in favor of faster table-driven compilers. However, as will be seen, expert
compilers facilitate update operations and, unlike conventional compilers,
are far more amenable to concurrent distributed processing, since rules can
be processed in parallel.

Expert compilers are no more universal than are their underpinning
expert systems. This will not be a problem so long as we crack the knowledge
acquisition bottleneck. In fact, human programmers serve as expert compil-
ers. You would not necessarily hire a physician to diagnose why your auto-
mobile is “coughing.” Similarly, you would not necessarily give an algebraic
specialist pseudo-code pertaining to computational chemistry and expect
him or her to properly translate it without assistance or further training. The
capability for knowledge acquisition is the key, and this in turn hinges on a
capability for higher-level representation.

Conventional compilers will not work where knowledge is required to
complete the translation. That is, a consequence of a capability for trans-
forming any program is the absence of domain-specific knowledge. Expert
compilers offer such universality, but akin to their human programmers,
provide software engineers with captured domain-specific knowledge. If
this knowledge is relatively inexpensive—as is the case when the processes
of knowledge acquisition are not bottlenecked—then the programming task
is randomized in proportion to the applicability of the knowledge. For exam-
ple, suppose that it was desired to compile the instruction, “Take out the
Windows trash.” Conventional compiler technology is not designed to do
this because conventional compilers are not meant to apply knowledge to the
translation task. On the other hand, expert compilers could bring knowledge

436 Stuart H. Rubin

of the Windows operating system to bear on the desired transformation. The
result of transformation is:

 1. Find the Windows Trash Can.
 2. Check if the Trash Can is empty.
 3. If the Can is empty then End.
 4. Empty the Trash Can.
 5. End.

Here, a knowledge of the Trash Can enabled the user to express himself
or herself without the usual details. In a very real sense, the knowledge base
understands what a Trash Can is and how it works. This knowledge base is
also extensible.

Grammatical inference can capture the symmetry needed to extend this
knowledge base at minimal cost. The actual mechanics follow below. To the
extent that there are differences, the symmetric definitions are populated by ran-
domness. Here is a mostly symmetric compilation of the instruction, “Put x in
the Windows trash.” See if you can pick out the inherent random differences:

 1. Find the Windows Trash Can.
 2. Check if the Trash Can is full.
 3. If the Can is full then End.
 4. Put x in the Trash Can.
 5. End.

The expert compiler can be updated so as to empty a full can. Notice how
the expert compiler itself is used to bootstrap the following definition.

 1. Find the Windows Trash Can.
 2. Check if the Trash Can is full.
 3. If the Can is full then, “Take out the Windows trash.”
 4. Put x in the Trash Can.
 5. End.

The higher-level code is not only more readable, less error prone, and more
rapidly programmed, but it also facilitates reuse and thus the construction of
software components. For example, the high-level instruction, “Replace the
Trash Can.” could readily be substituted for the similar instruction, “Take
out the Windows trash.” Similarly, at a still higher-level, the instruction, “Put
x in the Windows trash.” could be substituted for. Each successive level is a
randomization of the preceding one.

Chapter seventeen: KASERs in SoS design 437

17.9 Expert optimizing compilers
One difficulty that arises in the bootstrapping of higher-level languages
concerns the efficiency of the resulting code. For example, in the previ-
ous bootstrap the code will search for the windows trash can twice. It will
do so on processing statement one and again on processing statement one
when translating the higher-level statement, “Take out the Windows trash.”
There are several observations to be made here. First, the cost of being maxi-
mally efficient is rarely justified. For example, Karnough maps are rarely
used in the design of VLSI logic. Second, being maximally efficient on a
serial processor is not justified if parallel and/or distributed computation
cannot be fully utilized. The significance of this assertion is in proportion
to the number of parallel processors. Finally, and most importantly, expert
compilers can effect knowledge-based optimizations. Conventional opti-
mizing compilers produce efficient code. Expert compilers can also do this,
but in addition they can be applied to the generation of efficient algorithms.
Indeed, in theory at least, expert optimizing compilers can be self-applied
for scalability.

Notice that it is relatively easy to add rules to the expert compiler. This is
important because, unlike conventional compilers, it allows you to grow your
pseudo-code incrementally. By comparison, recall how difficult it would be
to write a large program if one could not grow it incrementally—you could
not debug it! You can also request the explanation subsystem to provide an
explanation in natural language for any and all steps in a transformative
sequence (e.g., Why did you apply that transformation rule here?). Compare
and contrast this with the error messages generated by conventional third-
generation compilers. The reader is referred to the article in Computer Design,
1986, by Geoffry Hinton entitled “Intelligent Tools Automate High-Level
Design” for further background information on expert compilers.

17.10 Knowledge reuse
The rules for expert compilation are said to be cases (i.e., CBR). This is because
they embody an enormous complexity of information that, while theoreti-
cally describable in the form of production rules, would be most difficult
to acquire. For example, each of the above antecedent schemas captures the
need for the sequence to be, “Repeat forever . . . End” before a match can even
be considered. However, each antecedent schema is also a predicate. Thus,
they can be combined in either the form:

IF antecedent schema A is matched OR antecedent
schema B is matched THEN effective code

or the form:

438 Stuart H. Rubin

IF antecedent schema A is matched AND antecedent
schema B is matched THEN effective code

Note that the first form can be captured by two distinct rules. Schema A
could be of the form:

Repeat forever . . . {Some combination of Body and Dec-
rement | Increment variable} End

Schema B could be of the form:

. . . Body Decrement variable . . .

Schema C could be of the form:

. . . Decrement variable Body . . .

Schemas D and E would substitute Increment for Decrement in the previous
two schemas. Observe now how schema A could be reused with the others:

IF antecedent schema A is matched AND antecedent
schema B is matched THEN effective code 1

IF antecedent schema A is matched AND antecedent
schema C is matched THEN effective code 2

IF antecedent schema A is matched AND antecedent
schema D is matched THEN effective code 3

IF antecedent schema A is matched AND antecedent
schema E is matched THEN effective code 4

This is software reuse with a vengeance, because it enables the construc-
tion of higher-level reuse tools and so on! Again, observe that the ease with
which the knowledge engineer can write such rules is highly dependent on
the level of language with which he or she can express themselves. Boostrap-
ping one expert compiler for the creation of another is clearly the theoretical
solution, because it defines a randomization operation. Finally, consider how
a grammatical approach could randomize the rule base (i.e., both left- and
right-hand sides) and in so doing provide assistance in the selection of con-
junctive predicates (i.e., antecedents and consequents). This will minimize
the cost of building expert compilers in the limit, which will minimize the
cost of writing higher-level languages, which will minimize the cost of build-
ing higher-level expert compilers, and so on. That is to say that a little help
in cracking the knowledge acquisition bottleneck goes a long way toward

Chapter seventeen: KASERs in SoS design 439

improving programmer productivity! Forty years ago, few believed in the
concept of a compiler. Now, it is a given. Similarly, less than twenty years
from now, the expert compiler will be commonplace.

17.11 An information-theoretic basis
Again, in 1975, Gregory Chaitin laid the basis for much of the new interpre-
tation of information theory with his paper published in Scientific American
entitled “On Randomness and Mathematical Proof”—see http://www.umcs.
maine.edu/~chaitin/sciamer.html [8]. This work showed, among related
things, that a sequence of random numbers is random because it cannot be
“compressed” into an effective generating function. That is, random number
sequences serve as their own fixed point. Notice that pseudo-random num-
bers are not truly random, because the generated sequence has an algorithm
for its fixed point (i.e., not the sequence itself). If something is not random,
it is symmetric. The author remains convinced that Gödel’s Incompleteness
Theorem along with Chaitin’s related work on information theory and Sol-
omonoff’s work on grammatical inference hold the key to major progress in
software engineering, artificial intelligence, and thus automated intelligent
tutoring systems.

Intelligent tutoring applications will realize SoSs having the greatest mac-
roeconomic utility because they truly enable societal advancement for uni-
form cost and are consistent with the American guarantee of equal access to
quality education for all regardless of economic class.

17.12 Knowledge amplification
The reader may be wondering where this theory of randomness and math-
ematical proof fit into cracking the knowledge acquisition bottleneck. A con-
ceptual approach is taken here, and the formal details will be developed
subsequently. Suppose that you have a rule in the system to the effect that,
IF the patient is bleeding AND the cut is recent THEN apply antiseptic with
certainty factor = 0.99. An abstraction, or superclass of this rule is:

IF physical_irregularities AND recent_events_of_medical
_interest THEN medical_cures with certainty_factor = X.

The first time that this rule is entered, it is random relative the existing base
of knowledge. Superclassing this rule may or may not have random compo-
nents—depending on whether or not the superclasses have been previously
defined. Now, consider that we are writing the previously defined medical
rule, IF the patient is coughing THEN prescribe cough syrup. The anteced-
ent, “the patient is coughing” does not match the rule instance, “the patient
is bleeding AND the cut is recent.” If it did, then that would be the most
specific match that we would use. (Actually, it matches neither predicate in

440 Stuart H. Rubin

this instance.) Next, let us try matching the antecedent, “the patient is cough-
ing” against the superclass, “physical_irregularities.” Note that there can be
an arbitrary number of superclass levels. Clearly, the former is an instance of
this superclass. Given this match, the software informs the knowledge engi-
neer that “recent_events_of_medical_interest” should be checked for the next
conjunctive predicate (e.g., the patient was just eating). Of course, the user can
say that this is not necessary (as in the case of the initial medical rule), but the
point is that the user was provided with a most specific prompt to consider.
Clearly, the quality of the knowledge base is raised as a result of the diligence
of our hypothetical automated assistant. This is a key concept in understand-
ing our subsequent formalization.

Observe that the resulting two rule instances are symmetric with respect to
the defined superclass. By this we refer to the properties that make them sym-
metric (e.g., the size of the two objects, their color, their composition, etc.).

Observe too that the specification of a rule consequent can be guided
by the same mechanism that guided the design of the rule antecedent. For
example, if my consequent is a sequence of actions intended to get a robot
to walk, then I could easily forget to poll one of many sensors at a critical
moment in the locomotion. (This has actually happened to us in program-
ming a turtle-like robot.)

17.13 Mining for rules
Data mining also fits into this unified theory of intelligence. Solomonoff has
done much work in the area of grammatical inference. This is the induction of
grammars from examples. It has been proven that for context-free grammars
or higher, induction must be guided by heuristics. In essence, grammatical
inference is the randomization of data. Given that we succeed in formalizing
an expert system having automated knowledge acquisition facilities in the
form of context-free grammars, it follows that data can be mined to create
such expert systems by building on the work of Solomonoff. Note that, if the
mining process is itself directed by expert systems, then it is called directed
mining. Just as conventional expert systems, such as XpertRule (i.e., which
we rate at the top of the line), have data mining tools available, so too will
our strategic expert systems. They will be implementations of Kurt Gödel’s
and Gregory Chaitin’s theories of randomness and Roy Solomonoff’s related
work on grammatical inference. We naturally view this approach as exciting!
The details will follow.

Remember, when you want to experience the thrill of an exciting proj-
ect in the making, you have to be prepared for revision as new knowledge
comes into play. After all, is that not the idea of software maintenance? Am I
not now doing self-reference, which is the subject of Gödel’s work? Have I not
now arrived at a fixed point, which tests your comprehension of the above?
Well, at least you now see the kind of reasoning that you were spared—at
least to this point.

Chapter seventeen: KASERs in SoS design 441

17.13.1 Approach

Consider programming a robot to take out the garbage. It is not too difficult
to imagine this robot emptying an empty can. Simply put, the program does
not convey to the machine what humans term commonsense knowledge. Expe-
rience has shown that common sense is difficult to capture. Now suppose
that the same robot could be programmed using the heuristic calculus. Such
a design might appear as follows (i.e., in a very high-level readable format).

 1. Do not waste time.
 2. Empty garbage can into trash receptacle.

Clearly, a desired instance of this design would have the robot ignoring an
empty garbage can. Such behavior could, in principle, be evolved.

There is no silver bullet. That is, there is no magic algorithm that once dis-
covered will make all our machines smart. Rather, whatever our machines
do, they must be programmed for. Thus, the key is not to directly attempt
to make our machines smart, but rather, indirectly make them smart by
making them easier to program (in the details). Furthermore, not only are
higher-level programs easier to write—they are also easier to modify and
reuse. Reuse has the added advantage in that latent bugs tend to surface in
proportion to the degree of reuse—including the degree of diversity of reuse,
whereupon they may be eradicated.

Proximity to a concept and a gentle shove are often all
that is needed to make a major discovery—and that
is the reason for the drive towards languages of ever-
higher level.

Douglas Hofstadter [10]

Certainly, there have been several success stories in the design and real-
ization of higher-level computer languages. The most notable successes have
occurred in the realization of third-, fourth-, and fifth-generation, extensible,
and object-oriented languages. We can see in retrospect that each of these
advances hailed a revolution in software engineering practice. However,
with the possible exception of the LISP family of languages (for which its
inventor, Dr. John McCarthy received Japan’s equivalent of our Nobel Prize
in 1996), none of these software advances enabled a revolution in the practice
of artificial intelligence. That distinction necessarily awaits a symbiosis of
human and machine—one that is based on first principles. The following
example will serve to illustrate the point.

Suppose that one desires to automatically synthesize a program for recur-
sively computing the factorial function. However, further suppose that one’s

442 Stuart H. Rubin

memory is a little lax and about all that can be recalled with certainty are the
following specifications.

 1. {0!=1, 1!=1, 2!=2, 3!=6, 4!=24}
 2. fact (0) = 1;
 3. fact (n) = n * fact (n+1) | n + fact (n+1) | n * fact (n-1) | n + fact (n-1) | . . .

We may write the third specification as:
 4. fact (n) = n {*, +} fact (n {+, -} 1),

or more generally as:
 5. fact (n) = n R1 fact (n R2 1),

where, R1 and R2 serve as semantic handles for the associated relational set
operators.

Clearly, given the characterizing I/O constraints, the proper instance(s),
if any (e.g., fact (n) = n * fact (n – 1)), will be automatically discovered. This
example was chosen as well to illustrate the need for a stack overflow/timer
protection mechanism. Also, notice the inherent tradeoff: The more concise
(general) the search specification, the less time that it takes to write, and the
longer it takes to search. Conversely, the more complex (specific) the search
specification, the longer it takes to write, and the less time it takes to search.
The cost-effectiveness of this tradeoff was depicted in Figure 17.1.

The designer specification language needs to include primitives that
allow one to specify what to evolve and what to hold constant at every step
of the evolutionary process. Thus, the heuristic calculus expresses certain
similarities with partial differential equations here. The complexity of solv-
ing these equations derives from the triangle inequality. Thus, if one mod-
ule has n variables having m possible values each, then the search space is
O (m**n). Next, if one can constrain the problem into p modules—each hav-
ing ceil (n/p) variables and ceil (m/p) possible values each, then the search
space is reduced to O (p*(m/p)**(n/p))—for an exponential reduction of
O (10**(n log m – n/p log m/p)). The key point to be made is that the search
space is under the dynamic control of an algorithm. This algorithm can spec-
ify (and learn) meta-heuristics that serve to divide and conquer the search
process for what equates to the equivalent of an exponential speedup in com-
putational power. Clearly, knowledge is power!

Ordering or otherwise delimiting the search space is to reiterate a heuris-
tic process. When search constraints are specified top-down by the knowl-
edge engineer, they represent embedded knowledge. When the constraints
are satisfied bottom-up through execution, domain-specific knowledge is
evolved. Heuristic knowledge is acquired through an attempt to compress
or randomize [8] positive and negative examples into respective fuzzy forms
that account for what works and what does not. Naturally, heuristic knowl-
edge itself is subject to dynamic evolution as the system further experiences

Chapter seventeen: KASERs in SoS design 443

what does and does not work. The result is that solutions are discovered, and
their discovery serves to increase the pace at which better solutions can be
discovered through a form of bootstrap.

The use of heuristics can sacrifice admissibility (i.e., the guarantee of find-
ing an optimal solution if one exists), but gains several orders of magnitude
in the capability to solve otherwise intractable problems. Often, heuristic
power can be gained by sacrificing admissibility by using some function
for h that is not a lower bound on h*. An example pertaining to the use of
nonadmissible heuristics can be found in Nilsson’s 15-puzzle [11]. Here,
h(n) = P(n) + 3 S(n), where P(n) is the sum of the distances that each tile is from
“home” (ignoring intervening pieces), and S(n) is a sequence score obtained
by checking around the noncentral squares in turn, allotting two for every
tile not followed by its proper successor and allotting zero for every other
tile; a piece in the center scores one [11]. Other heuristics include, but are
not limited to simulated annealing, exploiting domain symmetries, scaling
from small to large, divide and conquer, problem reduction, as well as other
transformational approaches.

The heuristic calculus will formalize processes for heuristic acquisition to
guide the search for domain-specific heuristics. The solution will entail boot-
strapping the definition of our programming methodology to allow for the
programmed discovery of the search control heuristics. Again, the emphasis
is on providing a programmable approach—not on any one learning algo-
rithm per se (e.g., Minton’s explanation-based learning [12]). The need for a
programmed approach is a consequence of the Incompleteness Theorem [13].

17.14 Refrigeration system design example
The purpose served by this example is to demonstrate the utility of the
KASER (knowledge amplification by structured expert randomization) [14]
in learning to abstract design principles for SoSs and apply those principles
to assist design engineers. The refrigeration example was chosen here for the
sake of clarity, although it should be clear that many other examples will do
as well.

To begin, let us diagram a simple Carnot-cycle refrigerator, depicted in
Figure 17.4. This has the simple predicate representation:

Next (Compressor, Heat Exchanger)
Next (Heat Exchanger, Evaporator)
Next (Evaporator, Refrigerator)
Next (Refrigerator, Compressor)

This then is a simple case upon which the user will improve. The model base
can be segmented for efficiency, maximum cooling, etc., or it can be general
as is presumed here. Let us further assume that the design engineer will opt

444 Stuart H. Rubin

to maximize cooling here and will at first manually transform this design
case into a two-stage compressor as Figure 17.5 makes clear.

The predicate representation for this flowchart is:

Next (Compressor, Heat Exchanger)
Next (Heat Exchanger, Evaporator) Next (Heat Exchanger, Heat Exchanger)
Next (Evaporator, Refrigerator) Next (Evaporator, Freezer)
Next (Refrigerator, Compressor) Next (Freezer, Compressor)
Equal (Refrigerator, Freezer)

Observe that we have the following case transformation here:

A A B
Next (Compressor, Heat
Exchanger)

Next (Compressor, Heat
Exchanger)

Next (Heat Exchanger,
Evaporator)

Next (Heat Exchanger,
Evaporator)

Next (Heat Exchanger,
Heat Exchanger)

Next (Evaporator,
Refrigerator)

→ Next (Evaporator,
Refrigerator)

Next (Evaporator, Freezer)

Next (Refrigerator,
Compressor)

Next (Refrigerator,
Compressor)

Next (Freezer, Compressor)

Equal (Refrigerator, Freezer)

This case can be generalized into a candidate version space of possible rules
for abstract development (e.g., a thermoelectric refrigerator). However, here
the right recursive rule, A → A B (see above, where A and B are KB segments,
or granules) completely captures the design improvement. This immediately
suggests A B B, A B B B, and so on as further candidate improvements. This
is a creative design suggestion for a multistage freezer and is viable, subject
to the availability of suitable refrigerants etc., which were not incorporated

Refrigerator

Evaporator

Compressor

Heat Exchanger

Figure 17.4 A Carnot-cycle refrigerator.

Chapter seventeen: KASERs in SoS design 445

into the model. A suitable graphics engine could then illustrate a multistage
freezer. No model can incorporate all of practice.

Consider next a simple thermoelectric refrigerator, depicted in Figure 17.6,
designed as an improvement to our simple Carnot-cycle refrigerator:

This has the simple predicate representation:

C
Next (Thermopile, Refrigerator)
Next (Thermopile, Heat Exchanger)

Here, the problem is to create a version space of possible maps from A to C
as a prelude to the automatic design of a multistage thermoelectric refrigera-
tor. The idea is to automatically port knowledge from one related design to
another. The rules in the version space will be automatically constrained by
other cases in system memory, which may not be contradicted. In this man-
ner, the system will automatically get smarter with use. At this point, here
are two viable maps in the version space, where the second is a generaliza-
tion of the first:

Compressor

Heat Exchanger

Heat
Exchanger

Compressor

Heat Exchanger Evaporator

Refrigerator

Evaporator

Freezer

Figure 17.5 Transformation into a two-stage compressor.

446 Stuart H. Rubin

A C
Next (Compressor, Heat Exchanger) Next (Thermopile, Refrigerator)
Next (Heat Exchanger, Evaporator) Next (Thermopile, Heat Exchanger)
Next (Evaporator, Refrigerator) →
Next (Refrigerator, Compressor)

A C
Compressor → Thermopile
Evaporator → NIL
Next (X, NIL) → NIL
Next (NIL, Y) → NIL
Equal (Refrigerator, Thermopile) (Thermopile, Refrigerator)

Now, consider applying this generalization to the design of a multistage
thermoelectric refrigerator. That is, A → C B′:

A C B′
Next (Compressor, Heat
Exchanger)

Next (Thermopile, Heat
Exchanger)

Next (Heat Exchanger,
Evaporator)

Next (Heat Exchanger, Heat
Exchanger)

Next (Evaporator,
Refrigerator)

→ NIL

Next (Refrigerator,
Compressor)

Next (Refrigerator,
Thermopile)

Next (Freezer, Thermopile)

Equal (Refrigerator, Freezer)

Heat Exchanger

Refrigerator

Thermopile

Figure 17.6 A simple thermoelectric refrigerator.

Chapter seventeen: KASERs in SoS design 447

The initial equivalent depiction of this two-stage thermoelectric freezer is
depicted in Figure 17.7.

This design is not quite correct, though, due to a random variation. That
is, the translation from fluid mechanics to thermoelectrics is not perfectly
symmetric. We observe that, while it makes sense to cool a compressed gas
in stages to conserve energy, this is not practical to do using thermocouples.
Thus, we need to add the domain-specific (context-sensitive) transformation
rule (discovered by the KASER algorithm automatically):

{Next (Thermopile, Heat Exchanger), Next (Heat
Exchanger, Heat Exchanger)} → {Next (Thermopile,
Heat Exchanger)}.

The corresponding flowchart is depicted in Figure 17.8. Notice that this
rule captures this essential difference in thermoelectric systems design for
broadly applicable reuse (and further specialization).

Thermopile

Thermopile

Heat Exchanger

Heat
Exchanger

Freezer

Refrigerator

Heat Exchanger

Figure 17.7 A two-stage thermoelectric freezer.

448 Stuart H. Rubin

Notice that this rule would not fire for the case of compressors. If we had
designed the thermoelectric refrigerator first and now wanted to transform
our solution to a gas refrigerator, then we would have the rule:

{Next (Thermopile, Heat Exchanger)} → {Next (Compres-
sor, Heat Exchanger), Next (Heat Exchanger, Evapora-
tor), Next (Evaporator, Refrigerator)}, where {Next (Heat
Exchanger, Evaporator)} → {Next (Heat Exchanger, Evap-
orator), Next (Heat Exchanger, Heat Exchanger)}.

Observe that right recursion will not be a problem.
This simple example does not include (or preclude) the use of informative

connectives (e.g., a dotted line indicating that the Heat Exchanger and Freezer
must not be too close to each other, and the like). Just like the directed arrow
translates into the “Next” predicate, the labeled line segment here might be
translated into the “Distant” predicate. Furthermore, each nonprimitive box
is hierarchically defined. Of course, decision boxes and similar constructs
(e.g., to capture concurrency, as in Concurrent (Apply Front Brakes, Apply
Rear Brakes)) may augment our block diagrams for use in more complex
designs. Also, facilities may eventually be needed to support development
by simultaneous users. Moreover, so far all generalizations have been made
in the first-order predicate calculus through the simulated application of the
KASER language translation algorithm [14]. This algorithm makes it unnec-
essary to translate into a second-order, or predicate calculus on account of

Thermopile

Thermopile

Heat
Exchanger

Freezer

Refrigerator

Heat Exchanger

Figure 17.8 A transformatively corrected two-stage thermoelectric freezer.

Chapter seventeen: KASERs in SoS design 449

its iterative context-sensitive rewrite rules, which unlike rules in the predi-
cate calculus are acquired bottom-up. Finally, fuzziness in system design is
captured by an allowance for nondeterministic (probabilistic) rewrite rules.
For example, the predicate relation, Equal (Refrigerator, Freezer) can induce
nondeterminism into the design process.

17.15 Conclusion
Kurt Gödel stunned the mathematical world with his Incompleteness Theo-
rem in 1931 [13]. His proof demonstrated that Hilbert’s plan for a completely
systematic mathematics cannot be fulfilled. That is, his theorem proved that
it would not be possible to formalize most of science and the arts. Instead,
processes of discovery would inexorably be tied to chance and lie outside
the realm of mechanical realization. However, the Japanese Fifth Genera-
tion project flew directly in opposition to this! Its failure could have been
foreseen. Basically, the predicate calculus would need to be formulated on a
heuristic basis so as to respect the Incompleteness Theorem. In particular, a
heuristic calculus for the Army’s Future Combat System (FCS) [9], [15] was
described using a cost-benefit approach.

The heuristic calculus takes up where the Japanese Fifth Generation
project left off [7]. It holds the promise of enabling the development of com-
plex software solutions for intelligent applications (i.e., those inherently
based on effective search), such as those pertaining to the U.S. Army’s FCS
(RoboScout, Oberwatch, et al.). Unlike the predicate calculus, the heuristic
calculus provides for computational creativity in keeping with the dictates
of the Incompleteness Theorem. The heuristic calculus can serve where the
application domain allows for solutions to be hill-climbed and for which a
simulation and/or model can be cost-effectively constructed. It represents
a novel approach to intelligent software design. In summary, the heuristic
calculus serves to weld the human and the machine in a symbiotic fashion.
Human and computational resources alike are fully utilized in a most cost-
effective and synergistic manner.

Acknowledgments
The material, which served as the basis for this chapter was prepared while
the author was at Ft. Monmouth, NJ. The author wishes to gratefully acknowl-
edge the assistance provided by the following individuals in alphabetical
order: Rich Borman, Simon Heimfeld, Dr. David Hislop, Robert Lawrence,
Stephen Levy, Dr. John Niemela, Steve Oshel, Doug Peters, and Randolph
Reitmeyer. This work was produced by a U.S. government employee as part
of his official duties and is not subject to copyright. It is approved for public
release with an unlimited distribution.

450 Stuart H. Rubin

References
 1. Steels, L. and R. Brooks, eds. 1995. The Artificial Life Route to Artificial Intelligence:

Building Embodied, Situated Agents. Lawrence Erlbaum Assoc., Mahwah, NJ.
 2. Zadeh, L. A. 1996. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst.

4(2):103–111.
 3. Rubin, S. H. 1999. Computing with words. IEEE Trans. Syst. Man, Cybern.

29(4):518–524.
 4. Pal, S. K., T. S. Dillon, and D. S. Yeung, eds. 2000. Soft Computing in Case-Based

Reasoning. Springer-Verlag, London.
 5. Koza, J. R., M. A. Keane, and M. J. Streeter. 2003. Evolving inventions. Scientific

American 288(2):52–59.
 6. Tristram, C. 2003. Supercomputing resurrected. MIT Technology Review

106(1):52–60.
 7. Feigenbaum, E. A. and P. McCorduck. 1983. The Fifth Generation. Addison-Wes-

ley Publishing Co., Reading, MA.
 8. Chaitin, G. J. 1975. Randomness and mathematical proof. Scientific American

232(5):47–52.
 9. Pronti, J., S. Molnar, D. Wilson, et al. 2002. Future Combat System (FCS) C2

Architecture Study. DARPA Interim Report, Document No. 008, Jan. 2002.
 10. Hofstadter, D. R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books

Inc., New York.
 11. Nilsson, N. J. 1980. Principles of Artificial Intelligence. Morgan Kaufmann Pub-

lishers Inc., Mountain View, CA.
 12. Minton, S. 1988. Learning Search Control Knowledge: An Explanation Based

Approach. Kluwer International Series in Engineering and Computer Science,
vol. 61, Kluwer Academic Publishers, New York.

 13. Uspenskii, V. A. 1987. Gödel’s Incompleteness Theorem, Translated from Russian.
Ves Mir Publishers, Moscow.

 14. Rubin, S. H., S. N. J. Murthy, M. H. Smith, and L. Trajkovic. 2004. KASER: knowl-
edge amplification by structured expert randomization. IEEE Transactions on
Systems, Man, and Cybernetics—Part B: Cybernetics 34(6):2317–2329.

 15. Ackerman, R. K. 2002. Army builds future combat systems around information
technologies. Signal 57(3):39–42, Nov. 2002.

451

chapter eighteen

System-of-systems standards
Mark A. Johnson

Contents

18.1 Contemporary standards ... 451
18.1.1 Definitions ... 452
18.1.2 Usage .. 452
18.1.3 Typical contents...453
18.1.4 Evolution ..454
18.1.5 Development ...454
18.1.6 Application ..455
18.1.7 Management ..456

18.2 System of systems standards ... 457
18.2.1 System of systems–specific considerations 458
18.2.2 Pathfinder examples of SoS initiatives and their use

of standards ... 459
18.2.3 Potential system of systems standards460

18.3 Final comments ...460
References .. 461

18.1 Contemporary standards
Almost each arena of human activity uses recognized standards or guide-
lines for personal, business, government, or other entity use. There exist a
multitude of organizations and standards. Visiting the Los Alamos National
Laboratory Research Library, in New Mexico, one finds that the library pro-
vides information on over 350,000 standards from more than 450 organiza-
tions [2]. A “standard” as found in a dictionary has many meanings, all of
which may have some relevance to systems of systems, their development,
and realization. The following paragraphs provide a look at some definitions
of “standard(s)” and some general meanings and specifics concerning their
usage, development, evolution, application, and management.

452 Mark A. Johnson

18.1.1 Definitions

“Standard” can be used as a noun or an adjective. As a noun, one definition
of a standard is that of an object serving as a banner or emblem to serve as a
rallying entity for battle. Another is that of a flag with a heraldic, organiza-
tional, or corporate symbol. In many realms of human endeavor it is thought
of “as something established by authority, custom, or general consent as a
model or example” [3]. A standard can be a safety guideline, norm, yardstick,
benchmark, measure, criterion, guide, touchstone, model, pattern, example,
or exemplar. A standard may represent a principle, ideal, code of behavior,
code of honor; or morals, scruples, or ethics [3,4]. In addition, it may relate to
a standard of work (quality, level, grade, caliber, merit) excellence [4].

As an adjective, standard may represent the standard way of doing “it”:
normal, usual, typical, stock, common, ordinary, customary, conventional,
wonted, established, settled, set, fixed, traditional, and prevailing. Or it may
be used to identify a piece of work on a subject as definitive, established, clas-
sic, recognized, accepted, authoritative, most reliable, exhaustive [4].

18.1.2 Usage

The term standard has both general and specific meanings within the realm
of contemporary standards. In general, a standard represents a document
produced by a standards body, organization, or entity. A specific standard
represents either a part of a document or the whole document that is required,
recommended, or permitted to be used as practices, processes, formats, con-
tents, etc.

There are three principal types or levels of standards and one alternative
[5]. They are:

 1. Standard;
 a. “shall” = is required to,
 i. Standards define mandatory practices, work products, formats,

contents, etc.
 ii. The clauses are considered “pass” or “fail” for measuring

compliance.
 2. Recommended or Expected Practice;
 a. “should” = is recommended that:
 i. Recommended practices contain suggested practices, processes,

products, formats, contents, etc.
 3. Guidelines;
 a. “may” = is permitted to—statement of possible course of action,
 b. “can” = is able to—statement of possibility or capability,
 i. Guides may (or can),
 1. Define alternatives and discuss tradeoffs for different meth-

ods to satisfy a standard.

Chapter eighteen: System-of-systems standards 453

 2. Offer guidelines for implementing.
 3. Recommend tailoring or document “typical” tailoring.
 4. Define strategy for application of related standards.
 5. Map between similar standards (and/or standards bodies).
 6. Translate terminology for different domains.
 7. Provide other supportive information.
 4. Alternative terms: used (with, or in place of, the above terms)
 a. Normative = standard, shall
 b. Informative = not considered actually part of the “requirements”
 i. Usually front matter and sometimes an introduction is defined

as informative.
 ii. Additionally, annexes, or other sections providing for under-

standing, may also be identified as informative.
 c. Some entities also add an intermediate designation, “expected”

where:
 i. Some practice is required.
 ii. A common solution is defined.
 iii. An alternative solution may be substituted.

Much of the terminology concerning usage, such as shall, should, or may,
have come to be understood to have the meanings associated with their usage
from Old English, where “shall” has come to be associated with authority
or command and is required, “should” is associated with expediency and
ought to be done, and “may” is used to express possibility, opportunity, or
permission [6]. The usage and origination of the standard often predicates
its contents.

18.1.3 Typical contents

Typical contents of a standard are presented in this section. A given standard
may or may not contain each of the following contents. In some standards
there may even be more topics and content than is presented. From this per-
spective there is not an all encompassing “standard” for a standard, although
the various standards organizations each use a template of the contents and
how they are portrayed and are to be accomplished. Thus, the following con-
tent delineation is taken from the content found in one standard developed
under the direction of a recognized standards organization and may not
reflect the content required or needed by another organization or entity.

An introduction usually begins a standard wherein are contained the devel-
opment and evolution background, compliance (voluntary or mandatory),
document organization, and acknowledgments. Next, the scope of the stan-
dard is addressed to include a purpose statement, coverage, limitations, and
in some cases, the intended applications. In addition, some standards include
a section of “normative references” that identify other standards or docu-
ments which are referenced or used as part of the standard. There may also

454 Mark A. Johnson

be a section on “informative standards” used to expand upon a requirement
and improve understanding of its application and/or context. Acronyms, ter-
minology, and relevant definitions are given next. The body of the standard is
presented next. The body is usually followed by some example applications of
the standard to demonstrate key concepts and contexts. As standards evolve,
the typical contents of a standard have and continue to evolve.

18.1.4 Evolution

Standards usually evolve from one or more entities developing a way of
defining, doing, or characterizing something. These become understood or
directed descriptions, methods, or measures of something. These descrip-
tions, methods, or measures are then applied to each something that comes
along that is similar to the original something in some way or another. This
may lead to a new standard or an extension of the existing one if/when the
new something is not similar enough to the old something. This leads to the
management of the descriptions, methods, or measures to ensure the correct
ones are applied correctly to the old something or revised to accommodate
a new something.

The evolution of standards by “harmonization” is what happens when
there become several standards from differing standards entities, address-
ing the same or similar areas, that need to be brought into accord with one
another [7]. The evolution of one or more standards may become impera-
tive due to changing organizations, industries, technologies, methods, or
national and/or international developments.

18.1.5 Development

Standards are usually developed to eliminate understandings between enti-
ties. These entities are typically manufacturers and vendors, users and con-
sumers, governments or laboratories. Standards are either market driven and
voluntary or directed within a government or organization. Standards may
be particular to a single industry, government, or organization, or may affect
many or even all industries, governments, or organizations. Thus some stan-
dards or portions of them may be general and may be broadly applied or
used, while others may be specific to a given process, product, or activity. Yet,
there are steps in the development process that are typically taken to realize
a standard, beginning with the agreement or decision that one is needed.

A six-step development process as outlined by the International Organi-
zation for Standardization (ISO) is as follows:

Stage 1: Proposal•	
Stage 2: Preparatory•	
Stage 3: Committee•	
Stage 4: Enquiry•	

Chapter eighteen: System-of-systems standards 455

Stage 5: Approval, and•	
Stage 6: Publication [8]•	

These six steps represent a formal approach and are the minimum neces-
sary to realize a viable standard. For ISO, a new standard must be proposed
from within its membership and formally initiated by a relevant technical
committee or subcommittee. For organizations or entities that are not so for-
mal and do not require membership to be involved, the standard may be
proposed by interested stakeholders within a given field, product area, gov-
ernment, business, or other entity. Yet, crucial to this stage is that the stake-
holders agree to the need for a relevant standard and commit to participating
in the process of its development.

Once the decision is made to pursue a standard, a body of “experts” cho-
sen by the stakeholders, along with a project lead or chairman, embarks upon
collecting and organizing information for the standard as well as drafting an
initial version of it. The preparatory stage is where brainstorming and draft-
ing take place to develop the “expert” solution to the problem the stakehold-
ers agreed needed a standard to resolve. The committee stage then becomes
where the “expert” working group goes back to the stakeholders with the
proposed solution for the standard. This may, and usually does, result in an
iterative process where redirections or clarifications from the stakeholders
cause the working group to revisit parts of the drafted standard until the
solution satisfies the stakeholders. Once the stakeholders are satisfied, the
standard is usually approved and then published.

For the more formal organizations, such as the ISO, once the relevant tech-
nical committee or subcommittee is in agreement with the draft standard, it
is sent out to all ISO organizational entities for review and comment. There
are times when this can be important, especially when the standard being
drafted may impact other industries, governments, laboratories, users, etc.
This will be an important aspect in the development of standards for sys-
tem of systems. whether or not the standard is being developed under the
umbrella of the ISO.

18.1.6 Application

“Standardization has always been about ensuring interoperability: a funda-
mental objective of all stakeholders be they policy-makers, industrial players
or users” [7]. Standards are organizational, market, professional, industry,
national, or international. In the future they may also become inter/intra
planetary or stellar. However, the reasons for applying standards are as
numerous as the number of standards themselves (e.g., each standard is
developed for a purpose or reason). An organizational example may be the
development of a standard as a guide for members to use when contemplat-
ing a computer hardware purchase. Markets may adopt a standard due to the
interest in it by the consumers or the availability of the devices upon which it

456 Mark A. Johnson

resides or operates (e.g., VHS versus Betamax). Professionals may instantiate
“best practices” from lessons learned over time as standards delineating the
accepted method or approach to accomplishing professional activities. An
industry may develop and instantiate a standard to ensure interoperability
and acceptance of products, processes, or other industrial activities. One cur-
rent example is the World Wide Web (WWW) domain naming conventions
or standard. A nation may implement national standards such as laws and
building codes. When a standard is adopted and used by one or more nations
or countries, it becomes an international standard. Two important families
of standards are the International Standards Organization (ISO) 9000 and
14000. The ISO 9000 family covers quality management, and the 14000 series
covers environmental management [9].

ISO 9001, published in 2000, is one of the premier international standards.
The standard, which gives the requirements for quality management systems,
is now firmly established as the globally implemented standard for providing
assurance about the ability to satisfy quality requirements and to enhance
customer satisfaction in supplier-customer relationships [9]. In the market
place, being able to stipulate that your organization or group is certified and
registered to be standard compliant is often perceived as having increased
credibility. With ISO 9001:2000 certification and registration the perception
is that your products are assured to meet a certain level of quality due to the
quality of your management. A group or entity receives certification from an
accreditation body that is certified as competent to evaluate and issue certifi-
cations to other entities. Registration is the recording of the certification.

Some specific application areas in which standards are implemented inter-
nationally are food safety, information security, automotive, medical devices,
supply chain security, health care, petroleum and gas, and software and sys-
tem engineering. Due to the fact that some standards are used in the develop-
ment and deployment of spacecraft and rovers to Mars and other bodies in the
solar system, perhaps we can say that the standards used are interplanetary
standards. The development, construction, launching, assemble of compo-
nents, operation, and management of the International Space Station is very
dependent upon an array of internationally accepted standards due to the
various countries involved in its realization, operation, and management.

18.1.7 Management

Standards management is highly dependent upon the standards organiza-
tion or other entity responsible for initially developing and/or implementing
the standard. As identified in the chapter introduction, from one organiza-
tional library that maintains access to standards for its members use, the
library identifies over 450 standards organizations managing over 350,000
standards [2]. These standards management organizations are from indus-
try, professions, national, and international entities.

Chapter eighteen: System-of-systems standards 457

To provide a flavor of the differing standards and standards management
organizations which develop and manage them, an abbreviated listing is given
in acronym form: AA, AASHTO, AATCC, ABMA, ABS, ACI, AECMA, AES,
AFNOR, AGA, AGMA, AIA, AIAA, AICHE, AIIM, AMT, ANS, ANSI, API,
AREMA, ARI, ARINC, ASA, ASABE, ASCE, ASHRAE, ASSE-SAFE, ASSE,
BPVC, ASME, ASQ, ASSE, ASTM, ATIS, AWS, AWWA, BPVC, BHMA, BOCA,
BSI, BSMI, CAA, CEA, CEN, CENELEC, CEPT, CGSB, CIE, CSAA, CSAI, CTI,
DELPHII, DELTA, DIN, DIN-ENG, DNV, EC, ECMA, EEMUA, EIA, ECA,
ETSI, EUROCAE, FM, FMVSS, FORD, GA, GEIA, GM, GMB, GPA, HOLDEN,
IAEA, ICAO, ICBO, ICC, ICEA, IEC, IEEE, IESNA, IETF, IMAPS, INCITS,
NAVISTAR, IPC, ISUZU, ISA, ISEA, ISO, ITU, JAA, JAG, DEERE, JSA, JTC1,
MODUK, MSS, NACE, NATO, NTS, NEMA, NFPAFIRE, NFPAFLUID, NISO,
NIST, NSF, OPEL, OSHA, PAPTAC, PFI, PIA, PPI, RTCA, RWMA, SAE, SBCCI,
SCTE, SES, SMACNA, SMPTE, SNZ, SSPC, TAPPI, TIA, UL, and ULC.

Typically, most organizations periodically review standards to ensure they
still serve the purpose for which they were originally developed. Changes
in processes, technologies, markets, or agreements among nations may drive
the need for either revision or withdrawal of the standard. There are also
times when a standard is taken over by another standards body or merged
with one or more other standards.

“Standards harmonization” is what happens when there become one or
more standards from differing standards entities, addressing the same or
similar areas of interest, that need to be brought into accord with one another
[7]. The culmination of the harmonization process is the production of one or
more standards covering the areas of interest. There are times when during
“harmonization” another standards organization may take over the manage-
ment of a given standard. In the development and implementation of stan-
dards for a system of systems, it may become a standard practice to perform
a harmonization-like process where a standard is developed that provides
an umbrella coverage of all of the standards accepted for use in the SoS.

18.2 System of systems standards
Engineering and acquisition are the arenas in which most current work on
system of systems is being performed. Looking at how standards and stan-
dardization are being used in engineering, one runs into the concept of a
“universally agreed-upon set of guidelines for interoperability” [7]. These
guidelines provide four levels of standardization: compatibility, interchange-
ability, commonality, and reference [7]. These four levels of standardization
are relevant in an SoS environment, since they create compatibility, simi-
larity, measurement, and symbol and ontological standardization. As we
mature the various disciplines involved in the development, fielding, and
use of a system of systems, we shall need to be able to develop standards to
ensure these four levels of the SoS standardization are met. In addition, more
levels of interoperability and standardization may become apparent.

458 Mark A. Johnson

Growth of the information technologies, nanotechnologies, open sys-
tems, globalization (flat Earth syndrome or world without borders) is and
will continue to drive the need for new standards. As these become part of
large-scale, complex, systems of systems, the need to update, harmonize, or
develop new system of systems standards is inevitable. As far as the defini-
tions, usage, and content are concerned, there will be minimal impact from
a system-of-systems perspective. Principal areas in which differences and
additions will emerge will be in their evolution, development, application,
and management.

18.2.1 System of systems–specific considerations

Standards, as with any other component of the system-of-systems journey,
must be considered in the early stages. Where appropriate or adequate stan-
dards and/or guidelines are unavailable, new ones should be developed. Due
to the desire for adaptability in all areas of system of systems, these should, at
a minimum, be developed as standards that are “open” to any entity partici-
pating or impacted by the SoS. Adaptability is necessary in a system of sys-
tems, since the membership or configuration is or can be dynamic, and the
relationships among all of the systems in the SoS may not always be known.
The key to enabling the ability to be adaptable is interoperability from seman-
tic, syntactic, and organizational perspectives/considerations [10].

To evolve current standards to those needed for the realization of system
of systems, current standards and their progress are used as the starting
point, since current standards will probably form the basis of system-of-sys-
tems standards. It may be that standards for a given system of systems will
be a collage of current standards adopted to enable realization of the given
system of systems. This is currently the case for efforts such as the United
States Army, Future Combat System of Systems or the Global Earth Observa-
tion System of Systems (GEOSS).

Development of system-of-systems standards is different from the
development of a single organizational, industry, national, or international
standard in that many systems, organizations, industries, nations, groups,
relationships, and perspectives are involved. In the GEOSS project, a new
architecture-centric, model-based systems engineering process developed
by Boeing emphasizes concurrent development of the system architecture
model and the system specification [11]. It may be that this process is the
beginning of the development of a system-of-systems standard concerning
SoS engineering processes.

Similar arguments concerning the difference of system-of-systems stan-
dards development are valid for their application. Managing SoS stan-
dards is probably going to embrace the same processes currently used with
contemporary standards. It may be that variations in SoS standards man-
agement will be due to the various organizations responsible for the SoS
standards being used for the given SoS endeavor. It is also probable that a

Chapter eighteen: System-of-systems standards 459

system-of-systems standards management standard may eventually evolve
and be developed.

18.2.2 Pathfinder examples of SoS initiatives
and their use of standards

The United States Army is developing the Future Combat System (FCS). The
network component of the system of systems enables the various associated
Families of Systems (FoS) to operate cohesively. The FCS network consists
of five layers to provide seamless data delivery among the SoS. Standards,
transport, services, applications, and sensors and platforms are the five lay-
ers. The standards layer provides the governance with which the other lay-
ers are shaped and formed, thus forming the foundation of the FCS network
[12]. The standards categories included are doctrine, spectrum, governance,
architecture, engineering, and policy.

The FCS network will conform to Defense Information Systems Agency
(DISA) standards that ensure end-to-end interoperability testing and net-
work testing. In addition, the FCS network will conform to the standards
documentation to ensure that the net-centric attributes are in place to move
into the net-centric environment as part of the service-oriented architec-
ture (SOA) in the Global Information Grid (another SoS development) [12].
Conformance to the DISA standards is a principal cornerstone for ensuring
interoperability of future FoS that become part of the FCS.

Global Earth Observation System of Systems (GEOSS) monitors climates,
crops, forests, deserts, and their changes/effects and potential impact on
humankind. It is a global project encompassing over 60 nations [11]. At
the beginning of the GEOSS project, interoperability and standards adop-
tion and methods of accommodation were developed through a standards
and interoperability forum. During the development phases of the GEOSS,
component, services, and interoperability standards were registered. These
became GEOSS-registered standards. The rationale is that, when compo-
nents conform to the same data descriptions and transport standards and
are well defined in the GEOSS standards registry, then interoperability is
easily achieved. However, when two or more GEOSS components do not
share common standards, or where data, transport, and service definitions
are not adequate, special interoperability arrangements are made [13]. Per-
haps the disconnects will lead to one or more system-of-systems standards
through extension and harmonization of the disparate one being accommo-
dated during the initial stages of the project.

Looking forward at an eventual interplanetary Internet, engineers at the
NASA Jet Propulsion Laboratory are working on standards for space commu-
nications. These would take into account the large distances and time delays
inherent in space communications components and systems. Also, the Inter-
net currently supports “only 4.3 billion unique addresses” and is discussing

460 Mark A. Johnson

launching a new format that would accommodate “340 trillion trillion tril-
lion addresses.” [14]. Developing a planetary, interplanetary, and interstellar
communications infrastructure will require the use and application of what
is envisioned for the system-of-systems discipline and SoS standards.

18.2.3 Potential system of systems standards

As with contemporary standards, system-of-systems standards will be both
generic and specific. Many of them will probably mimic current systems-
oriented standards yet incorporate extensions that incorporate system-of-
systems perspectives and needs. One need that is important in the systems
realm is adaptability. Adaptability will become even more important in
the system-of-systems realm due to the uncertainties, technologies, sys-
tems, stakeholders, organizations, and other entities that may be a part of
or involved with the future system of systems throughout its lifetime and
probable evolution.

One of the keys in ensuring the adaptability of a system of systems is
interoperability from semantic, syntactic, and organizational considerations.
One effort to provide a semantic and syntactic interoperability standard is
the development by the United States Department of Defense (DoD), Com-
mand, Control, Computers, Communications, Intelligence, Surveillance, and
Reconnaissance (C4ISR) organization of the “Levels of Information System
Interoperability”[15].

A potential tool and standard for use in system-of-systems management is
the DoD Architecture Framework (DoDAF). It uses a series of system or sys-
tem-of-systems architectural views to define or characterize levels of system
or system-of-systems development. A related tool and potential standard is
the Object Modeling Groups (OMG), Unified Modeling Language (UML).
Developed initially as a software algorithm development tool embracing
the object-oriented approaches to analysis, development, and programming,
UML has evolved into an often used tool for outlining, depicting, and evalu-
ating processes, interactions among entities, organizational dynamics, and
other inter and intra relationships. Additionally, an understanding by many
investigators of large-scale, complex, system of systems is that modeling
and simulation are going to play a critical role in SoS design, development,
application, and management. Thus, standard approaches to modeling and
simulating systems, processes, interactions, and other system-of-systems
activities are prime areas in which standards for SoS may evolve.

18.3 Final comments
As tools develop and more system of systems initiatives are brought into
being, standard approaches to initiating, developing, realizing, and manag-
ing a system of systems will be invented and become invested into our culture.
At the Second IEEE, International Conference on System of Systems in 2007,

Chapter eighteen: System-of-systems standards 461

an International Consortium on System of Systems (ICSOS) was proposed
and began forming. The consortium consists of partners from academia,
industry, national academies of many nations, governments (including mili-
tary components), and other international partners. The ICSOS is intended
to act as a neutral, nonprofit broker in translating the needs of industries,
governments, and others to the field of SoS researchers and to foster teaming
arrangements from interested parties to respond to SoS challenges. An area
already identified as needing attention is the area of SoS standards.

The need for system-of-systems standards is evident from the SoS litera-
ture, where definitions and perspectives are presented with great variabil-
ity. These variations lead to difficulties in advancing and understanding the
SoS discipline. Standards are used to facilitate common understandings and
approaches by deriving uniform agreements to definitions and approaches.
System-of-systems standards will help to unify and advance the SoS dis-
cipline for all disciplines requiring interoperability and standardization
among disparate systems.

One of the initiatives that will come out of the ICSOS effort is the instanti-
ation of a technical committee for SoS standards and sub/technical commit-
tees to address discipline subarea standards. The processes for developing
and instantiating SoS standards will follow many of today’s processes and
approaches with some additional considerations as described in the GEOSS
description with its “special arrangements.” These considerations shall
encompass the inclusion of practically all arenas of human activities that may
impact the SoS development, application, and management or vice versa.

References
 1. Fung, V., W. Fung, and Y. Wind. 2008. Competing in a Flat World: Building Enter-

prises for a Borderless World. Wharton School Publishing, Upper Saddle River, NJ.
 2. IHS Specs and Standards—LANL Research Library. 2007. http://library.lanl.

gov/infores/stand/ihs/index.htm.
 3. Merriam-Webster’s Collegiate Dictionary. 2004. Merriam-Webster Inc., Spring-

field, MA.
 4. Merriam-Webster’s Collegiate Thesaurus. 2004. Merriam-Webster Inc., Spring-

field, MA.
 5. Bowen, G. M. 2007. Systems & Software Engineering Standards, Introduction

to Books of Knowledge (BOKs) and Standards. http://members.aol.com/kai-
zensepg/standard.htm.

 6. The Random House College Dictionary. 1975. Random House, Inc. New York.
 7. European Telecommunications Standards Institute. Standards, Open Standards

and Interoperability. http://www.etsi.org/SOS_Interoperability/context.htm.
 8. International Organization for Standardization. 2008. International Organiza-

tion for Standardization. 2008. The International Organization for Standardiza-
tion. http://www.iso.org/iso/home.htm.

 9. International Organization for Standardization. 2008. Management stan-
dards. http://www.iso.org/iso/iso_catalogue/management_standards.htm.

462 Mark A. Johnson

 10. Office of the Under Secretary of Defense. 2006. Systems of Systems: Systems Engi-
neering Guide, Version 0.9, Office of the Undersecretary of Defense (Acquisition,
Technology, and Logistics).

 11. Pearlman, J. 2006. GEOSS—Global Earth Observation System of Systems, Key-
note Presentation, 2006 IEEE International SoS Conference, Los Angeles, CA.

 12. http://www.army.mil/fcs/network.html.
 13. Khalsa, S. J. S. 2007. Report on the GEOSS Interoperability Process Pilot Project,

Presentation at the IEEE GEOSS Workshop.
 14. http://www.spacemart.com/reports/Internet_preparing_to_go_into_outer_

space.htm, 10/17/2007.
 15. C4ISR Interoperability Working Group. 1998. Levels of Information System

Interoperability. U.S. Department of Defense, Washington DC.

463

Index
2-D x-ray fluoroscopy images, 244

A
Acceptance curve, 219
Adaptive policy, and carbon emissions, 211
Admissibility, sacrificing in heuristics, 443
Aerial refueling routes, 359
Aeronautical applications, 22
Aerospace industry, need for large-scale

systems integration in, 107–108
Agusdinata, D.B., xi, 207
Air cargo, security threats, 406
Air defense identification zone, 360
Air passengers (PAX), 406
Air traffic control, 343

communications, 362–363
Air traffic control assigned airspace, 352
Air traffic management, of system of air

vehicles, 342–343
Air Transportation System (ATS), 30, 341
Air vehicles

air defense identification zone, 361
air traffic control, 343
air traffic control assigned airspace, 352
air traffic control communications,

362–363
air traffic management, 342–343
aircraft certification, 344
aircraft registration, 344
airdrops, 362
airspace description criteria, 345
alert areas, 354–355
and characteristics of ICAO/FAA

airspace, 341
controlled firing areas, 356
enroute structures, 350
environmentally sensitive areas, 361–362
flight rules, 345–346
ICAO airspace categories, 346–347
ICAO airspace classifications description,

347–350
ICAO airspace designations overview,

347
international regions, 342
jet routes, 351
low-altitude airways, 350
military operations areas, 353–354
military training routes, 356–357

miscellaneous military airspace
structures, 357–360

and National Airspace System (NAS),
344–345

noise abatement procedures, 362
oceanic and offshore operations, 360
pilot certification, 343–344
prohibited areas, 352
restricted areas, 353
as SoS, 31
special federal aviation regulations, 362
special use airspace, 352
systems of, 11–12, 339–342
VFR flyways, 351
VFR transition routes, 351–352
VFR waypoints chart program, 352
warning areas, 355–356

Aircraft certification, 344
Aircraft design

integrated hierarchical modeling
environment for, 140

prediction profiler for, 151
via SoSE, 22–24

Aircraft registration, 344
Airdrops, 362
Airport model architecture, 407

analyzer overview, 415
automated flow control, 417
baggage handling system, 417
data analysis graphical output, 411
data analysis tool, 414, 416
data cleaning and analysis tool, 413
data collection in, 409–411
dataset with erroneous data cleaned, 412
input generator, 416–417
model development phases, 412
model validation and verification, 412, 414
multiple point selection, 411
overall system performance, 418
software interface to database, 409
subsystem analysis, 414
system inputs, 408
user interface for database query, 410

Airport operations, 403–404
air cargo, 406
airport security, 405
and analysis, 405
arrival rates, 408
database operations, 409–410

464 Index

emergent behavior in, 407
future challenges, 419
geographical distribution in, 407
managerial independence in, 407
miscellaneous security concerns, 406
operational independence in, 407
passenger baggage, 406
passengers (PAX), 406
rapid model architecture for, 407–418
SoS concepts, 404
as system of systems, 407

Airport security, 405
consequences of increased, 405

Airspace attributes, 345
Airspace description criteria, 345
Alert areas, in U.S. airspace, 354–355
Analysis, in architecture design process, 41–42
Ant colony swarm-based algorithm, 378–379
Architecture alignment, in SoS architectures,

56
Architecture description, 57
Architecture design principles, 44–45

change in needs, 45
competing needs, 45
design compromises, 46–47
resource availability constraints, 46

Architecture design process, 41
analysis, 41–42
design principles, 44–47
evaluation, 43–44
synthesis, 42–43

Architecture frameworks, 58
benefits of using, 57
DoD architecture framework, 60–62
Ministry of Defence Architecture

Framework, 58, 63–67
The Open Group Architecture

Framework (TOGAF), 58, 68
Zachmann framework, 58, 59

Architecture governance, in SoS
architectures, 56–57

Architecture principles and practices, 41
architecture design process, 41–44

Aries launch vehicles, 387, 391
Artificial neural networks, surrogate

modeling in, 144–147
Assertions, use in space SoS specifications, 395
Atomic models, in data aggregation

simulation, 120
Authentication, and system protection, 54
Automatic data collection, in airport SoS, 409
Autonomous rovers

base robot, swarm robot, and sensor
components, 366

haptically controlled base robot, 367–371
operation of haptically controlled base

robot in, 370–371
robust threat monitoring application,

375–382
sensor fusion, 374–375
stationary sensors and sensor networks,

367
swarm robots, 371–375
system of, 12, 365–367

Autonomy
in complex systems, 110
in SoS architectures, 48

Average path length, 195

B
Baggage handling, automated flow control

model, 417–418
Bandwidth constraints, in sensor networks,

285
Base robots

communication schemes with swarm
robots, 370–371

in systems of autonomous rovers, 366,
367, 368

Basic Regression Analysis for Integrated
Neural Networks (BRAIN), 146

Battery constraints, in sensor networks, 294
Beneficial emergence, 89–90
Biltgen, P.T., xi, 133
Binary decision fusion rule, 10
Bjelkemyr, M., 191
Blitzkrieg analogy, 322, 327–328

and RMA philosophy, 327
Boeing 787, SoS for, 23
Boeing Commercial Aircraft Division, SoS

applications, 22–24
Bottom-up analysis/synthesis, 46
Bottom-up design, 434
Brain MR imaging, SoS applications, 9
Brooks, R.R., xi, 281
Building codes

and energy efficiency, 221
for new homes, 213
trade-off with population growth, 226

Business case robustness, 55
Business model, 166–167

C
Caffall, D.S, xi, 385

Index 465

Canadian Space Agency, 389
Cantor tool, 295
Capability development, for U.S. Air Force,

326–327
Capability engineering, in defense SoS

applications, 320–321
Carbon emissions

adaptive policy approach, 211
adaptive policy design, 222–229
assumed trajectories of reduction, 222
CART analysis of case 1, 225–226
CART analysis of case 2, 227–228
Casel CART for policy adaptation, 224
conditions and guidance for policy

adaptation, 224–225
Dutch residential sector case study,

212–213
exploratory modeling and analysis

approach, 211–212
implications for policy design, 229
logit sharing function, 217
market share function, 218
mean payback, 219
policy analysis framework, 210–211
policymaking to reduce, 8–9, 207–209
refurbishment options values, 218
requirements for achieving 2025 target,

222–223
scenario of future residential, 221
SoS perspective, 209–210
SoS specification for residential sector,

213–222
specifications of SoS policymaking, 215
system variables and range, 217
technical approach to, 209–212
and uncertainty about rate of housing

demolition, 220
Carno-cycle refrigerator, 443, 444
Case-based reasoning, 422, 437
Causality

in health management SoS, 245–246
meals, sleep, blood pressure examples,

247
Centralized management functions

coexistence with decentralization, 94–95
necessity of, 93–94

Chebyshev’s inequality, 306, 309
Checked baggage, security threats, 406
Church’s thesis, 431
Class A airspace, 348
Class B airspace, 348
Class C airspace, 349
Class D airspace, 349
Class E airspace, 349–350

Class F airspace, 350
Class G airspace, 350
Classification and Regression Tree (CART),

221
Classification issues, for system of systems,

191–192
Closed-loop neural networks, 429
Clustering coefficient, 195
Co-ops

default cell behavior in, 262
in microgrid scenarios, 261

Code division multiple access (CDMA)
protocol, 378

Cognitive domain, in military operations, 325
Cole, R., xii, 37
Colgren, R., xii, 339
Collaboration, 100
Collaborative networks, 204
Collapse of system, 84
Commercial airports, Class B airspace and,

348
Commissary advanced resale transaction

system (CARTS), 335–336
Commonsense knowledge, 441
Competing needs, in architecture design, 45
Competition, in SoS evolution, 201
Compilers

expert, 429–430
expert optimizing, 437
expert vs. conventional, 435–436

Complex systems, 2
architecting, 4
interoperability in, 110

Complex systems engineering (CSE), 5–6, 72
Complexity, 174, 175

challenges for system design
methodology, 200

increases with cycles of innovation/
integration, 76

independence from uncertainty, 208
in medical and health management

systems, 245
and organizational change, 86
in SoS architectures, 49

Computability theory, 430
Computational creativity, 427
Computational intelligence, 423. See also

KASERS
rule-based, 423–424

Computer Assisted Reasoning system
(CARs), 221

Computer networks
for data processing of sensor network

data, 313

466 Index

intelligent decision support system based
on, 10

Computing pipeline, 301
bottleneck unit constraint, 305
interactive applications, 303
mapping problem formulation, 303
streaming applications, 303

Concepts of operation (CONOPs), 139
Concurrent engineering, 203–204

methodological illustration, 203
Conditional entropy, and emergent surprise,

92
Confidentiality, and system protection, 54
Conflict

and decentralization, 96
and diversity, 100

Constraints, 40
Controlled airspace, 346
Controlled firing areas, in U.S. airspace, 356
Convergence, 176, 183
Cooperation, in SoS evolution, 201
Coordinated data model, 53
Coordination, in SoS, 2
COTS open architecture combat systems,

322, 336
Coverage probabilities, in sensor networks, 293
Creighton, D., xii, 403
Crossbow sensor motes, 367
Cruise missile routes, 360

D
3D contour profiler, 153
3D position estimation, in medical imaging,

244
Data aggregation simulation, 119

DEVS-XML format, 119–120
DEVSJAVA simulation with XML-based

messages, 122
programming environment, 120–121
progress of DEVSJAVA simulation, 122
simulation results, 121–123
XML message components for systems in

SoS, 119
XmlEntity data structure in DEVSJAVA,

120
Data architecture, 52–54
Data description language, 111
Data dictionary, including in SoS

specifications, 395
Data mining, 440
Data routing, 10

detected signal energy in, 297

energy consumption in, 297
energy level-based, 300
event-driven adaptive method, 298
minimum energy level based, 300
in mobile agent-based distributed sensor

networks, 297–300
in multi-sink sensor networks, 300
path loss in, 297
priority-based, 301
proactive vs. reactive, 284
in sensor networks, 284, 289
shortest-path method, 284
source initiated on demand, 284
table-driven, 284

Decentralization, 94–95
and collaboration, 203
and dependence on small groups, 99
and increased conflict, 96
and individual freedom, 95
rhizome analogy, 96–97
sociological challenges, 98

Decision rules
for sensor networks, 285
in sensor networks, 289

Decisionmaking agency (DMA), in
microgrid scenarios, 257

Deepwater coastguard program, 18
Defense Acquisition Guidebook, 170–171

and SoS systems engineering
megaprocesses, 173

Defense applications, 11, 319–320
capabilities-based acquisition, 320
commissary advanced resale transaction

system (CARTS), 335–336
critical roles of information exchange and

capabilities integration, 330–332
description of forces and technologies,

321–322
Fleet Battle Experiment-India operational

concept, 331
force elements, 330
future combat system (FCS), 334
historical parallels, 327–328
late 20th-century U.S. history of SoS,

321–322
logical systems model, 328
massing of effects, 323
and move towards capability

engineering, 320–321
naval integrated fire control-counter air

(NIFC-CA), 335
from network-centric enablement to SoS,

326

Index 467

network-centric warfare report to
Congress, 324–326

network enablement of naval forces,
323–324

operational activities, 330
OSD SoS SE Guide, 333
related work and research opportunities,

336
revolution in military affairs, 322
robotic systems, 426–427
ship to objective maneuver, 330
single integrated air picture (SIAP),

334–335
SoS integration through networks, 324
SoS vs. network enablement, 327
SoSE for Air Force capability

development, 326–327
systems engineering considerations,

328–330
technically consistent SoS definitions for,

328, 329
time critical strike, 330
transition to network enablement and

SoS, 323–327
transport elements in, 329
U.S. DoD SoS examples, 332–336

Defense industry, need for large-scale
systems integration in, 107–108

Defense information Systems Agency (DISA)
standards, 459

Degree distribution, 195
Degree of belonging, in medical imaging, 244
DeLaurentis, D., xii, 207
Department of Defense (DoD), systems

engineering for SoS, 20
Dependability issues, in unmanned space

exploration, 399–401
Design by contract, 393
Design compromises, 46–47
Design of Experiments (DoE), generating

surrogate model data using,
148–149

Detection probability, in sensor deployment,
290

DEVS modeling and simulation, 115–118
system and subsystems, 116
target tracking model, 117
XML and, 118

DEVSJAVA, 108
DEVSJAVA atomic models

for threat detection system, 125
for XML-based SoS simulation, 121

DEVSJAVA components, 120
Dickerson, C.E., xii, 319

Direct CO2 emissions, in Dutch households,
213

Dirty bomb scenario, 288
Discrete Event System Specification (DEVS),

108, 115–118
Distributed resources

in airport operations, 404, 407
difficulty of operation, 256
in unmanned space exploration, 396–399

Distributed SoS, 397
Distribution needs, in microgrid systems,

267–268
Dittmar, L., xii, 207
Diversity

and conflict, 100
in SoS architectures, 49

DMA policy outline, 264–265
DoD Architecture Framework, 58, 60–62, 460
DoD SoS, systems engineering for, 20
Domain knowledge, 434
Dreamliner aircraft, 23
Dutch Residential Energy Model (DREM),

214–216
alpha level, 214, 216
beta level, 214, 216–217
computational experiments, 221–222
delta level, 214, 220–221
gamma level, 214, 217–220

Dutch residential sector, carbon emissions
case study, 212–213

Dynamic programming, 10
2D matrix for minimum end-to-end

delay, 305
for OLPC configurations, 304

Dynamic routing, 297
Dynamic visualization, 152

E
E-enabling, 22–24
Earth Departure Stage, 387
Effectiveness, vs. performance, 137–138
Efficiency, 176–177, 183
Electric microgrids, 265–266

distribution in, 267–268
production in, 266–267
as SoS, 9–10
storage in, 267

Electric power systems grids, as SoS, 28
Electronic Health Records (EHRs), 21
Emergent behavior, 5–6, 31, 71–74, 85, 172,

176, 194–195
in airport operations, 404, 407

468 Index

beneficial emergence, 89–90
definitions, 85–87
and entropy, 91
examples, 88–89
in guiding enterprise evolution, 183
of heuristic calculus, 426
in manned space exploration, 391
in military applications, 332
and prediction, 90–91
in production systems, 198
and scope, 87
and surprise, 91–93
in system of systems (SoS), 93–101

Energy consumption, in sensor networks,
300

Energy efficiency refurbishments,
stimulating, 220–221

Energy managers, 257
Enroute structures, in airspace, 350
Enterprise

defined, 175
examples, 176

Enterprise architecture, 39
Enterprise capabilities, 175–176

defined, 176
evolution of, 176–178
evolution through emergence,

convergence, and efficiency, 176
framework for evolving, 181
governing and measuring, 184–185
phases of evolution, 177
role of purposeful interventions in

evolution, 179
shaping and enhancing evolution of, 178

Enterprise engineering, 178–179
Enterprise engineering process, example, 184
Enterprise evolution, guiding and

monitoring, 182, 183
Enterprise SoS, 7–8, 165–166, 174–175

achieving outcomes through
interventions, 179–181

and classical systems engineering,
166–167

and enterprise capabilities, 175–176
enterprise capabilities government and

measurement, 184–186
and enterprise engineering, 178–179
example enterprise engineering process,

184
framework for evolving capabilities,

181–182
and guidance/monitoring of enterprise

evolution, 182–183
and increasing complexity, 175

and service-oriented architectures,
186–187

and SoS engineering, 167–174
Entropy, and emergence, 91
Environmental quality, SoS applications, 29
Environmentally sensitive areas, in airspace,

361–362
Estimation, in health management

technology, 246
European Space Agency, 389
Evaluation, in architecture design process,

43–44
Evolutionary behavior

in health management technology, 246
in production systems, 197
in system of systems, 193–194

Executive oversight, in classical SoS
engineering, 167

Expert compilers, in KASERS model, 429–430
Expert systems, in medical imaging, 240–243
Exploitation, vs. exploration, 182
Exploration, vs. exploitation, 182
Exploratory modeling and analysis, 154
Exploratory modeling and analysis (EMA),

applications to carbon emissions
policy, 211–212

Extended enterprises, 204
Extensible intelligent search engines, 429
Extensible markup language (XML), 6

F
FAA airspace classifications, 347. See also

ICAO airspace categories
Federal Acquisition Regulations, 343
Federal Enterprise Architecture (FEA)

Framework, 58
Federated data model, 53, 54
Feedforward neural network, structure, 145
Field of view (FoV), 77
Field-programmable gate array (FPGA), in

autonomous rover configuration,
371

Fifth-generation languages, 425
Filtered Monte Carlo, for inverse design, 156
Finite range, of mindset, 81
Finite targets, challenges with introduction

of more systems, 157
FLAMES simulation framework, 141–142
Fleet Battle Experiment-India, 330

operational concept, 331
Flight rules, 345–346
Flight schedules, 408

Index 469

Flow control, in airport model architecture,
417

Force elements, 330
Formal methods, use in space exploration

context, 394
Freedom, and organizational

decentralization, 95
Freight loads, 408
Frequency division multiple access (FDMA)

protocol, 378
Functional integration, 50
Functional specifications, in space

exploration context, 393
Fundamentalism, 78
Future combat missions (FCMs), 19
Future combat system (FCS), 334, 459

fuzzy programming approach, 422
heuristic calculus for, 426

Fuzziness system design, 449
Fuzzy programming approach, 422
Fuzzy rules, in medical ultrasonics, 237

G
Generators. See Microgrids
Genetic algorithms

fitness function, 292
genetic encoding for sensor deployment,

291–292
in IDSS, 291
implementation of genetic operators,

292–293
selection of candidates, 292

Genetic symmetries, 428–429
GEOSS Project, 22
Global closest first (GCF) algorithms, 297
Global Earth Observation System of Systems

(GEOSS), 21–22
registered standards, 459

Global Positioning Satellite (GPS) system, 27
swarm robot navigation with, 372–373

Globs, 260, 261
Government enterprise information

technology acquisition, 185–186
Granularity, 77

and pattern perception, 88
view and, 78–79

Greedy cells, in microgrids, 261
Grid technology, in sensor networks, 285
GroundScouts robots, 376. See also

Micromodular robot swarm
Group dynamics, and emergence, 90
Guidelines, vs. standards, 452

H
Haptic gravitational field, 369–370
Haptically controlled base robot, 367–368

communication schemes, 370–371
control schemes, 371
electrical and mechanical construction,

368–369
and haptic gravitational field, 369–370
haptic teleoperator control interface, 368

Haptically controlled based robot, operation
in system of autonomous rovers,
370–371

Harmonization, in health management
technology, 249

Hata, Y., xiii, 233
Heading angle, calculation for swarm robots,

373
Health management SoS, 9, 244–245, 249

application study, 247–248
based on causality, 245–247
and evolution of science, technology, and

society, 245
framework, 246
world observation, 245

Healthcare systems, 20–21
Heterogeneous systems, 2, 108, 194

in production systems, 198
Heuristic calculus, 425, 442

and emergent behavior, 426
sacrificing admissibility in, 443
for sensor array development, 427
as successor to Japanese Fifth Generation

Project, 449
Heuristic search, 430
Higher-level languages, 434

bootstrapping problems, 437
and expert compilers, 430
and human thinking mechanisms, 431
minimizing cost of writing, 438
routes of design, 434
and rule-writing, 433
success stories in design of, 441

Horan, B., xiii, 365

I
ICAO airspace categories, 346–347
ICAO airspace designations, 347
ICAO/FAA airspace, 340

characteristics, 341
Class A airspace, 348
Class B airspace, 348

470 Index

Class C airspace, 349
Class D airspace, 349
Class E airspace, 349–350
Class F airspace, 350
Class G airspace, 350
description of classifications, 347–350

IF-THEN rules, 430, 437–438
Image registration

with expert system, 244
in medical imaging systems, 243–244

Image segmentation
in medical imaging, 240
in medical ultrasonics, 236–238

Implementation architectures, 23
Implementation problems, 8

airport operations, 13
defense applications, 11
intelligent decision support system, 10
KASERS in SoS design, 13–14
medical and health management SoS, 9
policymaking to reduce carbon

emissions, 8–9
SoS standards development, 14–15
space applications, 12–13
system of autonomous rovers, 12
systems of air vehicles, 11–12

Incompleteness Theorem, 449
INCOSE systems engineering process, 166,

328, 332, 336
Information domain, in military operations,

325
Information fusion, in sensor networks, 285
Information sharing

critical role in defense applications,
330–332

SoS challenges, 99
Informative connectives, 448
Instrument flight rules, 345

for Class A airspace, 348
Class E airspace and, 349
low altitude charts, 350

Integrated hierarchical modeling, 139–142
Integrated Product and Process

Development, 139
Integrated transcontinental wireless

network, 39, 40
Integration strategy, 100

in complex systems, 110
in health management technology, 249
in SoS architectures, 49–52

Integrity, and system protection, 54
Intelligent decision support system, 10

approximate solution using genetic
algorithm, 291–293

based on sensor and computer networks,
281–283

command control center, 287
cyberspace in, 286–287
genetic algorithm 3D display, 293
logical components, 289
network mapping for optimal computing

pipeline configuration, 301–306
probabilistic sensor detection model,

290–291
related work, 283–285
sensing field, 286
sensor data fusion, 306–313
sensor data routing, 294–301
sensor deployment, 289
sensor deployment performance

evaluation, 293–294
sensor deployment problem formulation,

289–290
system architecture, 288
system components and design process,

286
system framework, 285–287
technical solutions, 287–313

Intelligent software design, cost
effectiveness, 424, 426

Intelligent tutoring applications, 439
Interdependencies, large-scale, 174
Interface control, 25
International Air Traffic Control (IATC), 342
International Civil Aviation organization

(ICAO), 11, 342
International Consortium on System of

Systems (ICSOS), 461
International Council on Systems

Engineering (INCOSE), 137
International Organization for

Standardization (ISO), 454–455
Interoperability, 2, 3, 460

in complex/multiagent systems, 110
as defined by U.K. MoD, 321

Intuition, 84
Inverse design technique, 7, 154, 156
Ising system, 294–295
ISO 9001, 456
Iyengar, S.S., 281

J
James Webb Space Telescope, 389
Jamshidi, M.M., ix, xiii, 1, 107, 365
Japanese Fifth Generation Project, 423

heuristic calculus as successor to, 449

Index 471

Jet routes, 351
Johnson, M.A., xiii, 451
Johnstone, M., 403
Joint Capability Integration and

Development System (JCIDS), 320
Joint Vision 2020, 324
Juno, 388–389
Jupiter missions, 388–389

K
KASERS. See also Knowledge Amplification

by Structured Expert
Randomization (KASERS)

in SoS design, 13–14
Knowledge acquisition bottleneck, 430–431

Church’s thesis, 431
pseudo-code for, 431–433
sample for-loop rule, 433
sample while-loop rule, 433
theoretical perspective, 431

Knowledge amplification, 439–440
Knowledge Amplification by Structured

Expert Randomization (KASERS),
13, 421–422

background, 423–427
expert compilers, 429–430
expert optimizing compilers, 437
expert vs. conventional compilers,

435–436
information-theoretic basis, 439
knowledge acquisition bottleneck,

430–433
Knowledge Amplification by Structured

Expert Randomization (KASERS),
and knowledge amplification,
439–440

knowledge-based language design,
434–435

and knowledge reuse, 437–439
mining for rules, 441–443
problem statement, 423
randomization, 428–429
refrigeration system design example,

443–449
Knowledge-based language design, 434

example, 434–435
Knowledge representation language, in

expert compilers, 429
Knowledge reuse, 437–439
Kobashi, S., xiii, 233
KTH-IPM, 200

L
Land rovers SoS, 31
Language design, knowledge-based, 434–435
Large-scale systems, 109
Large-scale systems integration, need for,

107–108
Le, V.T., xiii, 403
Leadership issues, in complex systems,

84–85
Learning organization culture, 100
Legacy systems, interaction with, 168
Legal values, including in SoS specifications,

395
Lindberg, B., xiv, 191
LISP, 425, 441
Listings

XML-based SoS architecture, 112
XML-based SoS architecture with two

systems and subsystem, 113–114
XmlEntity structure in DEVSJAVA, 120

Local closest first (LCF) algorithms, 297
Local flying areas, 359
Local rules, for data routing in sensor

networks, 294
LOng RAnge Navigation (LORAN)

technique, 27
Loose coupling, 170
Low altitude air to air training (LOWAT), 357
Low-altitude airways, 350, 351
Low altitude tactical navigation areas, 359
Lunar Surface Access Module, 387

M
Management, operation and control system

(MOCS), in microgrids, 265, 268
Managerial independence, 193, 197, 198, 404

in airport operations, 407
Manned space exploration, 386

Aries launch vehicles, 387
component framework, 392–393
contract interfaces, 393
Earth Departure Stage, 388
Guidance, Navigation, and Control

(GN&C) component, 391
Lunar Surface Access Module, 387
Orion crew capsule, 386–387
SoS architecture in, 390–392
SoS issues, 389–396
SoS specification, 394–396

Manufacturing, vs. production, 196

472 Index

Manufacturing System Design Framework
Manual-MIT, 200

Mars Science Laboratory, 388
McCarter, B.G., xiv, 71
Measure of effectiveness (MoE), 7, 138
Measure of performance (MoP), 138

translating to MoEs, 141
Measurement, in health management

technology, 246
Medical and health management SoS, 9, 233

medical ultrasonics, 233–240
Medical imaging

fuzzy membership functions, 242
growing criteria, 241–243
image segmentation with expert

knowledge system, 240–243
segmented cerebral lobes and lateral

ventricles from MR images, 242
segmented MR brain images, 242
SoS in, 240

Medical ultrasonics, 233
feature value map, 237
hardware SoS, 235
hardware systems, 235
location system, 239
membership functions, 237
registration system, 238, 239
segmentation system, 236–238
software SoS, 236
titanium nails, 234
true image and segmented holes, 238
ultrasonic surgery support system,

233–239
x-ray images in, 234

Megaprocesses, and Defense Acquisition
Guidebook, 171–173

Meng, M., xiv, 281
Methodological issues, 8, 191–192
Methodology drivers, 434
Michael, J.B., xiv, 385
Microgrid organizing principles, 259

in context of primary power grid, 259
organizations made up of, 259
for power systems composed of

microgrids, 260–261
Microgrid subsystems, 265

communication in, 268–269
computation in, 272
cyber security in, 269
decisionmaking and optimization in,

269–271
electric power subsystems, 265–268
management, operation, and control of,

267–268

modeling and prediction, 271
planning and monitoring, 271–272

Microgrid use cases, 272
central control disconnected from main

grid, 275–276
distributed control connected to main

grid, 274–275
distributed control disconnected from

main grid, 276
momentary three-phase voltage

instability, 275
operation at system capacity, 273
operation connected to primary grid,

273–275
operation disconnected from primary

grid, 275–276
operation under anomalous, unexpected,

and failure conditions, 273
operation under normal conditions, 273
transition from connected to

disconnected state, 276–277
Microgrids

architectural advisor role, 258
behavior of organizational elements,

261–262
control and management, 262
decisionmaking agency and functions,

256–258
decisionmaking agency capabilities, 257
decisionmaking agency roles, 257–258
defined, 252–256
device protector role, 258
distribution path in, 265
DMA policy outline, 264–265
engineering needs, 253–254
future work, 279
human interaction in, 264
in independent settings, 253
load control in, 264
long-term time scales, 263
maintenance scheduling in, 265
near-instantaneous time scales, 263
operational policies, 262–264
organizing principles, 259–261
in powerplant settings, 253
problems and issues, 255–256
short-term time scales, 263
as SoS, 9–10, 251–252
source control in, 264
stop, start, adopt setpoint, float

commands, 271
strategic monitor role, 258
strategic planner role, 258
subsystems, 265–272

Index 473

system point of contact, 258
tactical monitor and controller role, 258
time scales, 263
use cases, 254–255, 272–277
user role, 258

Micromodular robot swarm, 376
ant colony-based swarm algorithm,

378–379
communication layer, 377
communication scheme, 378
control layer, 376
electrical and mechanical construction,

376–377
GPS layer, 377
infrared layer, 377
mine detection application, 379–382
power layer, 376
swarm behavior, 378–379
ultrasonic layer, 377

Middle-out design, 434
Military airports, Class C airspace and, 349
Military airspace structures, 357–358

aerial refueling routes, 359
cruise missile routes, 360
local flying areas, 359
low altitude tactical navigation areas, 359
national security areas, 360
slow routes, 358–359
temporary special use airspace, 360

Military operations areas, in airspace,
353–354

Military training routes, 356–357
Mindset

and changes in views, 83
of opportunity exploration, 100
view and, 78

Mindset range, 81–82
Mine detection application, 366, 379

experimental results, 380–382
mine hardware, 379–380
obstacle avoidance, 382
robot mine disarming, 382
starting point, 381

Mining for rules, 441–443
Ministry of Defence Architecture

Framework, 58, 63–67
Mirror neurons, 77, 79
Mobile agent-based sensor networks

data routing in, 297–300
node sizes vs. objective values, 299
visualization of search results, 299

Mobile agent routing algorithms, 297
ModArt, 200
Model fidelity

in airport systems SoS, 412, 414
and speed of analysis, 142

Model linking, 141
Modeling. See also SoS simulation

quantifying technology potential
through, 138–142

Monte Carlo simulation, 155
Multi-sink sensor networks

data routing in, 300
energy level-based routing algorithm, 300
minimum energy cost routing algorithm,

300
priority-based routing algorithm, 301

Multiagent robotic systems simulation, 116,
117

Multiagent systems (MAS), 109
Multisystem capabilities, classical approach

to developing, 168
Multivariate scatterplot matrix, 155

for inverse design, 156
Multiview analysis, 83–85

organizational challenges, 99

N
Nahavandi, S., xiv, 365, 403
Nakajima, H., xiv, 233
NASA

Apollo missions, 27
Constellation Program, 386
involvement in James Webb Space

Telescope, 389
National Airspace System (NAS), 30, 342,

344–345
National Healthcare Information Network

(NHIN), 20
National Marine Electronics Association

(NMEA) data format, 371
National security areas

in military airspace, 360
in U.S., 361

National security SoS applications, 27–28
National Transportation System (NTS), 30
Naval integrated fire control-counter air

(NIFC-CA), 335
Needs, 40

change over time, 45
Net-centric environments, systems

engineering in, 185
Netherlands. See Dutch residential sector
Network centric operations (NCO), 11, 325

military use of, 320
Network-centric warfare, 322

474 Index

Network Enabled Capabilities (NEC), 11
in U.K. defense systems, 320

Network mapping, 285, 289
based on dynamic programming, 10
cost models of pipeline and network

components, 302
2D matrix for minimum end-to-end

delay, 305
mapping problem formulation, 302–304
for optimal computing pipeline

configuration, 301
optimal linear pipeline configuration

(OLPC), 304–306
Networks

in production systems, 198
scale-free, 195
small-world, 195

Neural network training procedure, 147
Noise abatement procedures, in airspace, 362
Nonrepudiation, and system protection, 54

O
Oberwatch, 427
Obstacle avoidance, in mine detection

application, 382
Oceanic airspace operations, 360
Offshore airspace operations, 360

warning areas and, 355
Ontology, 74
Open data networks, 24
Open systems approach, 170

in military technology, 322, 328, 336
to SoSE, 15–16

Operational autonomy, 48, 193, 197, 198, 404
in airport operations, 407

Opportunity exploration mindset, 100
Optimal linear pipeline configuration

(OLPC), 304–306
Optimization, as transformation, 428
Organizational change, complexity and, 86
Organizational health, life cycle of, 94
Orion crew capsule, 386–387, 391
Orthopedic kinematic analysis, 9
OSD SoS SE Guide, 333
Outcomes, coproduction of, 174
Outside-the-box thinking, 98

P
Pacific Rim SATCOM system, 40, 41, 47
Paradox, governance of, 17–18

Passenger baggage, in airport operations, 406
Passenger loads, 408
Passenger security threats, 406
Patch rules, 435
Pathfinder, and SoS standards, 459–460
Patterns, and granularity, 88
Payback acceptance curve, 220
Performance, vs. effectiveness, 137–138
Phillips, L.R., xiv, 251
Physical connectivity, 47
Physical domain, in military operations, 325
Physical integration, 50
Pilot certification, 343–344
Policy analysis, for carbon emissions,

210–211
Population growth, 217, 221, 223

and carbon emissions policy targets, 229
Postconditions, 393
Power constraints, in sensor networks, 285
Power system condition information, 269
Precision requirements, including in SoS

specifications, 395
Prediction

of carbon emissions, 209
and emergence, 90–91
and increasing rate of technical change,

174
Prediction profiler, for aircraft technology

parameters, 151
Proactiveness, 100
Probabilistic sensor detection model, 289

in IDSS, 289–290
Problem decomposition, 434
Product development, in traditional systems

vs. SoS, 202–203
Production systems

assessment of SoS characteristics in,
197–198

defined, 196–197
emergent behavior in, 198
evolutionary behavior in, 197
heterogeneity in, 198
in microgrids, 266–267
network issues in, 198
self-organization in, 197–198
as system of systems (SoS), 196

Programming environment, for data
aggregation simulation, 120–121

Prohibited areas, in airspace, 352
Proximity, as airspace description criterion,

345
Pseudo-code, transforming VHLL to, 430

Index 475

Q
Quality management systems, 456
Quantitative Technology Assessment (QTA),

135
Quantum mechanics, 80

R
Raghavan, V., xv, 365
Randomization, 428–429
Range, and mindset, 81–82
Rao, N.S.V., xv, 281
Rational drug design, 429
Rational Unified Process (RUP), 58
Reality

impossibility of discerning, 80
perceptions of, 73–74

Rebovich, G., xv, 165
Recognition, in health management

technology, 246
Recommended practices, 452
Redundancy, 199
Reference architectures, 23
Refrigeration system design

Carnot-cycle refrigerator, 444
KASERS example, 443
simple thermoelectric refrigerator, 446
transformation to two-stage compressor,

445
transformatively corrected two-stage

thermoelectric freezer, 448
two-stage thermoelectric freezer, 447

Regional Healthcare Information
Organizations (RHIOs), 21

Relationships
critical number of, 84
importance of fostering across

organizations, 169
Renewable energy, SoS approach, 29
Residential energy use

Dutch case study, 212–213
and potential for reducing carbon

emissions, 213
SoS computer model, 214–221
SoS specification for, 213–222

Residual cultural bias, 99
Resource availability constraints, 46
Resources, 40, 210
Response surface methodology, surrogate

models in, 143–144
Restricted areas, in U.S. airspace, 353

Revolution in Military Affairs (RMA), 322
Blitzkrieg analogy, 327

Rhizome analogy, 96–97
Rigidity, 80

organizational consequences, 98
Risk management, 25

in service-oriented architectures, 186–187
RoboScout, 426
Robotic combat vehicles, 422
Robotic movement, design for, 425
Robotic swarms, as SoS, 26
Robotics applications, 14
Robust design

in SoS architectures, 55–56
in space exploration, 401

Roles and responsibilities, governance of, 56
Routing protocols, for ad hoc sensor

networks, 284–285
Rubin, S.H., xv, 421
Rules

adding to expert compilers, 437
mining for, 441–443
symmetric, 429, 440

S
Sahin, F., xv, 107, 365
San Antonio ACE Center, 31
SATCOM systems. See Pacific Rim SATCOM

system
Scale, 75–77

in classical systems vs. SoS organizations,
170

in microgrids, 262, 263
Scale-free networks, 195
Schedule robustness, 55
SCHEME language, 425
Scientific Advisory Board (AAB), 134
Scope, view and, 77–78
Screening machines, in airport SoS, 408
Sea vehicles SoS, 31
Search-control heuristics, 14
Security levels, in airport SoS, 408
Self-organization

in intelligent decision support systems,
314

in production systems, 197–198
in system of systems, 194

Semantic integration, 50
Semere, D., xv, 191
Sensor array development, 427
Sensor bed, system architecture, 248

476 Index

Sensor data fusion, 306
and Chebyshev’s inequality, 309
false alarm rate calculation, 310, 313
heterogeneous ROC curve, 312
homogeneous ROC curve, 312
normal distribution based hit rate, 313
numeric results with different

deployment radius, 313
problem formulation, 306–307
simulation results, 311–313
threshold-OR fusion method, 307–311

Sensor data routing
based on spin glass theory, 294–296
gridded example, 296
in IDSS, 294
local rules in, 294
in mobile agent-based distributed sensor

networks, 297–300
in multi-sink sensor networks, 300

Sensor deployment strategy, 10, 284, 287, 290
fitness function, 292
genetic encoding for, 291–292
selection of candidates, 292

Sensor fusion, for autonomous rovers,
374–375

Sensor networks, 20
battery constraints, 294
coverage probabilities, 293
for data collection, 313
data routing in multi-sink, 300
decision rules for, 285
deployment in intelligent decision

support system, 289
detection accuracy issues, 297
dirty bomb application, 288
intelligent decision support system based

on, 10, 281–283
risks in military applications, 297
scheduling algorithms for, 285
in system of autonomous rovers, 367
visiting order in, 298

September 11 attacks, 405
Service industry, 25

SoS perspective, 25
Service-oriented architectures, in

government acquisition, 186
Ship to objective maneuver (STOM), 330
Simplification, in health management

technology, 249
Single integrated air picture (SIAP), 334–335
Six Sigma, 200
Slow routes, in military airspace, 358
Small groups, and decentralization, 99
Small-world networks, 195

Sociocognitive issues, 5–6, 71–74
Software models, 111
Software reuse, 438
SoS aircraft design, 22–24
SoS architectures, 4–5, 37–41

for airport operations, 407–418
architecture alignment in, 56
architecture description in, 57
architecture frameworks, 58–68
architecture governance in, 56–57
architecture principles and practices,

41–47
autonomy in, 48
complexity in, 49
considerations, 47–55
critical success factors, 55–57
data architecture, 52–54
defined in space exploration context, 390
diversity in, 49
integration strategy in, 49–52
irreversibility of, 390
robust design in, 55–56
system protection in, 54–55
XML-based, 112
XML-based with two systems and

subsystem, 113–114
SoS bridging, 51
SoS challenges, 136–138
SoS classification, 8
SoS context, 39
SoS definitions, 3–4, 8
SoS design

defined in space exploration context, 390
KASERS in, 13–14, 421–450

SoS engineering (SoSE), 3, 16–17, 167
and changing SoS landscape, 168–169
classical, 167–168
e-enabling and SoS aircraft design via,

22–24
emerging principles, 169–170
open systems approach, 15–16
in space exploration, 25–26
sustainable environmental management

via, 29–30
SoS hierarchy, 136
SoS infrastructures perspective, 24
SoS integration, 3, 16
SoS lexicon, 210
SoS management, and governance of

paradox, 17–18
SoS methodological issues, 8
SoS model, 38
SoS problems, 4

airport operations, 13

Index 477

defense applications, 11
definition, classification, and

methodological issues, 8
emergence, 5–6
enterprise SoS, 7–8
intelligent decision support system, 10
KASERS in SoS design, 13–14
medical and health management SoS, 9
SoS architectures, 4–5
SoS simulation, 6–7
SoS standards, 14–15
space applications, 12–13
system of autonomous rovers, 12
systems of air vehicles, 11–12
theoretical problems, 4–8

SoS refactoring, 51
SoS services perspective, 25
SoS simulation, 6–7

for airport operations, 407–418
example with three systems and XML-

like message passing, 118
quantifying technology potential by,

138–142
vs. modeling, 425–426

SoS simulation framework, 107–108, 115
data aggregation simulation, 119–123
DEVS modeling and simulation, 115–118
examples, 119–130
multiagent robotic systems simulation,

117
robust threat detection system

simulation, 123–130
XML and DEVS, 118

SoS specification, for manned space
exploration, 394–396

SoS standards, 451, 457–458. See also
Standards development

application of, 455–456
contemporary, 451
definitions, 452
development, 454–455
evolution, 454
harmonization of, 454
ISO six-stage development process,

454–455
management of, 456–457
Pathfinder examples, 459–460
potential, 460
SoS-specific considerations, 458–459
typical contents, 453–454
usage, 452–453

SoS systems engineering
emerging principles, 169–170
new view of, 170–174

relationship of megaprocesses to Defense
Acquisition Guidelines, 173

relationships among megaprocesses, 174
SoS Type I, 192, 199
SoS Type II, 192, 199
Space applications, 12–13, 385–386

manned space exploration, 386–387
SoS issues in manned exploration, 389–396
SoS issues in unmanned exploration,

396–401
unmanned space exploration, 388–389

Space communication SoS, 26–27
Space communications standards, 459–460
Space exploration, SoS engineering in, 25–26
Space-filling designs, 148
Space navigation SoS, 26–27
Spatial light modulators (SLMs), 429
Special federal aviation regulations, 362
Special use airspace, 347, 352

alert areas, 354–355
controlled firing areas, 356
military operations areas, 353–354
prohibited areas, 352
restricted areas, 353
warning areas, 355–356

Sphere-packing, 148
Spin glass data routing, 294–296

gridded example, 296
Sridhar, P., xv, 107
Stakeholders, 210
Standards development, 14–15, 454–455. See

also SoS standards
Standards harmonization, 457
Standards management, 456–457
Static routing, in sensor networks, 297
Stationary sensors, in system of autonomous

rovers, 367
Storage needs, in microgrids, 267
Stovepipes, 209
Strategy evolution, 427
Strong emergence, 195, 198
Subsystem interactions

in airport SoS model, 414
heuristic vs. standardized technology-

centered, 204
Subsystem-level analyses, 139
Subsystems, as self-organizing nodes, 202
Surprise

as conditional entropy, 92
and emergence, 91–93

Surrogate models
in artificial neural networks, 144–147
generating data using Design of

Experiments (DoE), 148–149

478 Index

multilevel linkage of, 152
process of generating for parametric

technology evaluation, 149
in response surface methodology, 143–144
technology evaluation using, 142–143
technology trade studies with, 150–157

Sustainable environmental management,
SoSE perspective, 29–30

Swarm algorithm flow chart, 379
Swarm robots, 128, 129, 371

in foraging state, 381
GPS interface, 372
heading angle calculations, 373
mechanical construction and

components, 371
navigation solution with GPS, 372–373
parameters, 373
robot architecture, 372
in threat detection system simulation,

127, 376
Symbolic programming, 14

in microgrids, 272
Symmetric rules, 429, 440
Symmetry, vs. randomness, 428–429
Synergism, 3
Synthesis, in architecture design process,

42–43
System architecture, 39
System capabilities, classical approach to

development, 167
System development, methodological

illustration, 203
System of air vehicles, 339–342. See also Air

vehicles
System of autonomous rovers. See

Autonomous rovers
System of systems (SoS), 1–3, 108–115

in airport operations, 403–404, 407
characteristics, 192–193
comparison of engineering with non-SoS,

201
concept model, 193
defense applications, 11, 19, 319–320
definition, classification, and

methodological issues, 191–192
definitions, 3–4, 109, 192–193
dynamics and methodology, 200–204
electric power systems grids, 28
emergence issues, 71–74, 93–101, 194–195
evolutionary behavior, 193–194
and future combat missions (FCMs), 19
in health management, 244–248
heterogeneity in, 194
implementation problems, 8–15

as large and complex sociotechnical
system, 192

in medical imaging, 240–244
in medical ultrasonics, 233–240
methodology dynamics, 201–204
miscellaneous issues, 15–31
multiview analysis, 83–85
in national security, 27–28
problems in, 4–15
production systems as, 196–198
purpose of design methodology, 200
in renewable energy, 29
robotic swarms as, 26
scale or view, 75–77
security examples, 18
self-organization in, 194
shift from performance to effectiveness,

137–138
sociocognitive aspects, 5–6, 71–74
space applications, 12–13
technically consistent definitions for

military purposes, 328, 329
technology evaluation for, 133–136
theoretical problems, 4–8
in transportation systems, 30–31
type classifications, 199
U.S. DoD examples, 332–336

System protection, in SoS architectures,
54–55

System unravelings, 390
Systems engineering (SE), 4, 7

classical, 166–167
in defense applications, 327–328

T
Tactical areas of regard, 331–332
Target tracking, DEVS simulation model, 117
Task-relevant haptic augmentation, 368
Technical autonomy, 48
Technical change, rate of, 174
Technical management processes, 171
Technical processes, 171
Technological robustness, 55
Technology Development Approach (TDA),

135, 138
Technology evaluation

challenges of SoS, 136–138
defined, 134
with integrated, hierarchical modeling

environment, 139–142
quantifying with modeling and

simulation, 138–142

Index 479

shift from performance to effectiveness,
137–138

for SoS, 133–136
with surrogate models, 142–150
technology trade studies with surrogate

models, 150–157
Technology Identification, Evaluation, and

Selection (TIES), 135
Technology trade studies, with surrogate

models, 150–157
Temporary Flight Restriction (TSR), 348
Temporary special use airspace, 360
Terminal Radar Service Areas (TRSAs), 347
Terrorism, use of sensor networks in, 288,

289
The Open Group Architecture Framework

(TOGAF), 58, 68
Theoretical SoS problems, 4

architecting SoS solutions, 4–5
definition, classification, and

methodological issues, 8
emergence and sociocognitive aspects,

5–6
enterprise SoS, 7–8
SoS simulation, 6–7

Thermoelectric refrigerator, 445, 446
multistage, 446

Threat detection system simulation, 123, 375
DEVSJAVA atomic and coupled models,

125
DEVSJAVA simulation with XML-based

messages, 125
initial conditions of XML system

simulation, 126
robot electrical and mechanical

construction, 376
robust simulation, 126–130
scenario, 376
simulation setup, 124–126
swarm of micromodular robots in, 376
XML components for systems in SoS, 124
XML format, 123–124

Throughput requirements, including in SoS
specifications, 395

Tight coupling, 31
disadvantages in space exploration, 393

Time, as airspace description criterion, 345
Time critical strike (TCS), 330
Time division multiple access (TDMA)

protocol, 378
Timeframe, view and, 79–80
Top-down analysis/synthesis, 46
Traffic Management Initiatives (TMIs), 343

Transcontinental wireless network, physical
connectivity, 47

Transparency, increasing for single systems,
170

Transportation systems, 30–31
Traveling salesman problem, 425

for sensor networks, 298
Trust, 101

building in complex structures, 84, 85
and single-system transparency, 170

Two-stage thermoelectric freezer, 447
transformatively corrected, 448

U
U.K. Ministry of Defence, 320

military capability definitions, 321
Smart Acquisition program, 320

Uncertainty
fundamentalism as reaction to, 78
independence from complexity, 208
managing and shaping through

enterprise engineering, 178–179
and prediction of carbon emissions, 209

Uncontrolled airspace, 346
Class G airspace as, 350

Uncoordinated data model, 52, 53
Underwater rovers, 32
Unified Modeling Language (UML), 68
Unmanned aerial vehicle (UAV) systems, 109
Unmanned aerospace vehicle routes

(UAVRS), 360
Unmanned space exploration, 388

availability, consistency, correctness
issues, 400

centralized, distributed, and token-ring
algorithms, 398

data collection phase, 396
dependability issues, 397, 399–401
dependable vs. trustworthy systems,

399–400
distributed systems in, 396–399
impacts of mission failure, 400–401
James Webb Space Telescope, 389
Juno, 388–389
landing phase, 396
launch and ascent phase, 396
Mars Science Laboratory, 388
preparation for operations, 396
reliability, robustness, safety issues, 400
SoS issues in, 396–401
travel-to-space exploration objective, 396

480 Index

U.S. defense systems, 319
commissary advanced resale transaction

system (CARTS), 335–336
COTS open-architecture combat systems,

322, 336
description of forces and technologies,

321–322
future combat system (FCS), 334
late 20th-century SoS history, 321
military operations airspace, 353–354
naval integrated fire control-counter air,

335
from network-centric enablement to SoS,

326
network-centric warfare report to

Congress, 324–326
network enablement of naval forces,

323–324
OSD SoS SE Guide, 333
related work and research opportunities,

336
restricted airspace, 353
revolution in military affairs, 322
SoS examples, 332–336
SoSE for Air Force capability

development, 326–327
systems engineering considerations,

327–328
U.S. Federal Reserve System, 180

V
VFR flyways, 351
VFR transition routes, 351–352
VFR waypoints chart program, 352
Victor airways, 350, 351
View, 75–77

defined, 77–81
and granularity, 78–79

human perceptions of, 80
and mindset, 78
and scope, 77–78
and timeframe, 79

Virtual networks, 204
Visual flight rules, 345
Volume, as airspace description criterion, 345
Vu-graph projector, and granularity, 88

W
War game simulation, 427
Warning areas, in airspace, 355–356
Weak emergence, 198

reducing, 194
White, B.E., xv, 71
Wireless sensor networks, 288. See also

Sensor networks
Wu, Q., xvi, 281

X
XML

data representation in, 111–112
and DEVS, 118

XML-based SoS architecture, 112
DEVSJAVA atomic and coupled models

for, 121
with two systems and subsystem, 113–114

XML message components, in data
aggregation simulation, 119

XmlEntity structure, in DEVSJAVA, 120
XPIROV, 210, 211

Z
Zachmann Framework, 58, 59
Zhu, M., xvi, 281

	Front cover
	Dedication
	Contents
	About the Editor
	Contributors
	chapter one. Introduction to system of systems
	chapter two. SoS architecture
	chapter three. Emergence of SoS sociocognitive aspects*
	chapter four. A system-of-systems simulation framework and its applications
	chapter five. Technology evaluation for system of systems
	chapter six. Enterprise system of systems
	chapter seven. Definition, classification, and methodological issues of system of systems
	chapter eight. Policymaking to reduce carbon emissions: an application of systems perspective
	chapter nine. Medical and health management system of systems
	chapter ten. The microgrid as a system of systems
	chapter eleven. An integrated intelligent decision support system based on sensor and computer networks
	chapter twelve. Defense applications of SoS
	chapter thirteen. System of air vehicles
	chapter fourteen. System of autonomous rovers and their applications
	chapter fifteen. Space applications of system of systems
	chapter sixteen. Airport operations: a system-of-systems approach
	chapter seventeen. Knowledge amplification by structured expert randomization-KASERs in SoS design
	chapter eighteen. System-of-systems standards
	Index
	Back cover

